High Temperature Induced Brittle-Ductile Transition of Monocrystalline Silicon via In Situ Indentation

被引:0
作者
Zhao, Zerui [1 ,2 ]
Li, Xianke [1 ,3 ]
Yang, Xinhang [1 ,2 ]
Wu, Hao [1 ]
Zhang, Chi [1 ,2 ]
Wang, Shunbo [1 ,3 ]
Zhao, Hongwei [1 ,2 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Natl Key Lab Automot Chassis Integrat & Bion, Changchun 130025, Peoples R China
[2] Minist Educ China, Key Lab CNC Equipment Reliabil, Changchun 130025, Peoples R China
[3] Jilin Univ, Chongqing Res Inst, Chongqing 401120, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Indentation; In-situ; Silicon; SEM; Crack; High-temperature; INDENTER ANGLE; BEHAVIOR; CRACKING;
D O I
10.1007/s11249-025-01974-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Monocrystalline silicon is difficult to molding process due to the unknown mechanism of temperature-influenced brittle-plastic transition. Indentation test of monocrystalline silicon from room temperature (RT) to 500 degrees C was carried out within scanning electron microscope (SEM). Evolution of surface damage mode at elevated temperatures was in situ observed. Cracking and extrusion occurred during indentation of monocrystalline silicon from RT to 200 degrees C, while shallow scallop-shell lateral peeling was found to be generated by a combination of secondary radial crack and shallow lateral crack. The phenomenon of surface peeling disappeared at 300 degrees C. The plasticity of the material significantly increased. Dislocation motion coexists but competes with microcrack nucleation-expansion with temperature increasing. The completion of the brittle-plastic transition is evident at 500 degrees C. Cracks are no longer generated on the surface and pile-up phenomenon is enhanced. This discovery demonstrates the feasibility of plastic molding processing of monocrystalline silicon at high temperatures.
引用
收藏
页数:8
相关论文
共 21 条
[1]   In situ electrical characterization of phase transformations in Si during indentation -: art. no. 085205 [J].
Bradby, JE ;
Williams, JS ;
Swain, MV .
PHYSICAL REVIEW B, 2003, 67 (08)
[2]   Silicon phase transitions in nanoindentation: Advanced molecular dynamics simulations with machine learning phase recognition [J].
Ge, Guojia ;
Rovaris, Fabrizio ;
Lanzoni, Daniele ;
Barbisan, Luca ;
Tang, Xiaobin ;
Miglio, Leo ;
Marzegalli, Anna ;
Scalise, Emilio ;
Montalenti, Francesco .
ACTA MATERIALIA, 2024, 263
[3]   Reveal the Deformation Mechanism of (110) Silicon from Cryogenic Temperature to Elevated Temperature by Molecular Dynamics Simulation [J].
Han, Jing ;
Song, Yuanming ;
Tang, Wei ;
Wang, Cong ;
Fang, Liang ;
Zhu, Hua ;
Zhao, Jiyun ;
Sun, Jiapeng .
NANOMATERIALS, 2019, 9 (11)
[4]   Deformation behaviour of soft-brittle polycrystalline materials determined by nanoscratching with a sharp indenter [J].
Huang, Weihai ;
Yan, Jiwang .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2021, 72 (72) :717-729
[5]   Influence of indenter angle on cracking in Si and Ge during nanoindentation [J].
Jang, Jae-il ;
Pharr, G. M. .
ACTA MATERIALIA, 2008, 56 (16) :4458-4469
[6]   Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior [J].
Jang, JI ;
Lance, MJ ;
Wen, SQ ;
Tsui, TY ;
Pharr, GM .
ACTA MATERIALIA, 2005, 53 (06) :1759-1770
[7]   Microscale Fracture Behavior of Single Crystal Silicon Beams at Elevated Temperatures [J].
Jaya, Balila Nagamani ;
Wheeler, Jeffrey M. ;
Wehrs, Juri ;
Best, James P. ;
Soler, Rafael ;
Michler, Johann ;
Kirchlechner, Christoph ;
Dehm, Gerhard .
NANO LETTERS, 2016, 16 (12) :7597-7603
[8]   Strain states and evolutionary mechanism of microstructures at the crack tips of monocrystalline silicon [J].
Li, Xu ;
Zhang, Ran ;
Li, Shuo ;
Wang, Yalei ;
Cui, Lei ;
Yao, Yaxuan ;
Ren, Lingling ;
Wang, Xueshen ;
Jin, Senlin ;
Zhang, Yi ;
Tao, Xingfu .
APPLIED SURFACE SCIENCE, 2022, 602
[9]   Shuffle-glide dislocation transformation in Si [J].
Li, Z. ;
Picu, R. C. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (08)
[10]   Permanent, macroscopic deformation of single crystal silicon by mild loading [J].
Missale, Elena ;
Chiappini, Andrea ;
Spiess, Richard ;
Speranza, Giorgio ;
Pantano, Maria F. .
MATERIALS TODAY COMMUNICATIONS, 2023, 34