TranMamba: a lightweight hybrid transformer-Mamba network for single image super-resolution

被引:0
作者
Zhang, Long [1 ]
Wan, Yi [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, 222 S Tianshui Rd, Lanzhou 730000, Gansu, Peoples R China
关键词
Single image super-resolution; Transformer; Mamba; Hybrid transformer-mamba network;
D O I
10.1007/s11760-025-03907-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transformers excel in modeling long-range dependencies for computer vision, but the quadratic complexity of self-attention complicates lightweight model design. The Mamba model, with linear complexity, offers similar capabilities but underperforms compared to Transformers. Inspired by these insights, we propose TranMamba, a lightweight hybrid Transformer-Mamba network that enhances both performance and efficiency in Single Image Super-Resolution (SISR). Specifically, we reduce the computational cost associated with self-attention by alternating between Transformer and Mamba modules. To balance the extraction of both local and global information, we designed Transformer Aggregation Block (TAB) and Mamba Aggregation Block (MAB) to strengthen feature representation. Additionally, we developed a Reparameterized Spatial-Gate Feed-Forward Network (RepSGFN) to further improve the model's feature extraction capabilities. Extensive experiments demonstrate that TranMamba achieves SOTA performance among models of comparable size.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lightweight Attended Multi-Scale Residual Network for Single Image Super-Resolution
    Yan, Yitong
    Xu, Xue
    Chen, Wenhui
    Peng, Xinyi
    IEEE ACCESS, 2021, 9 (09): : 52202 - 52212
  • [32] Lightweight image super-resolution with multiscale residual attention network
    Xiao, Cunjun
    Dong, Hui
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [33] Multi-Residual Feature Fusion Network for lightweight Single Image Super-Resolution
    Qin, Jiayi
    He, Zheng
    Yan, Binyu
    Jeon, Gwanggil
    Yang, Xiaomin
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1511 - 1518
  • [34] Partial convolution residual network for lightweight image super-resolution
    Zhang, Long
    Wan, Yi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8019 - 8030
  • [35] Lightweight image super-resolution with a feature-refined network
    Liu, Feiqiang
    Yang, Xiaomin
    De Baets, Bernard
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 111
  • [36] Partial convolutional reparameterization network for lightweight image super-resolution
    Zhang, Long
    Wan, Yi
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (06)
  • [37] Ultra-lightweight convolutional network for efficient single-image super-resolution
    Bai, Haomou
    Sang, Yue
    VISUAL COMPUTER, 2025,
  • [38] Color Separated Restoration for Lightweight Single Image Super-Resolution
    Kim, Jinseong
    Kim, Taehun
    Kim, Daijin
    AICCC 2021: 2021 4TH ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE, 2021, : 80 - 88
  • [39] Structured image super-resolution network based on improved Transformer
    Lv X.-D.
    Li J.
    Deng Z.-N.
    Feng H.
    Cui X.-T.
    Deng H.-X.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (05): : 865 - 874+910
  • [40] CFDN: cross-scale feature distillation network for lightweight single image super-resolution
    Mu, Zihan
    Zhu, Ge
    Tang, Jinping
    MULTIMEDIA SYSTEMS, 2024, 30 (06)