Applying the Dark Target Aerosol Algorithm to MERSI-II: Retrieval and Validation of Aerosol Optical Depth over the Ocean

被引:2
作者
Pei, Xin [1 ]
Yang, Leiku [1 ]
Ji, Weiqian [1 ]
Chen, Shuang [1 ]
Cheng, Xiaoqian [1 ]
Lu, Xiaofeng [1 ]
Wang, Hongtao [1 ]
机构
[1] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
aerosol optical depth; MERSI-II; MODIS; dark target; S-NPP VIIRS; WATER-VAPOR; MODIS; LAND; SATELLITE; PRODUCTS; AERONET; CLOUD; NETWORK; PERFORMANCE;
D O I
10.1007/s00376-024-4032-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Medium-Resolution Spectral Imager-II (MERSI-II) instrument aboard China's Fengyun-3D satellite shares similarities with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, enabling the retrieval of global aerosol optical depth (AOD). However, no officially released operational MERSI-II aerosol products currently exist over the ocean. This study focuses on adapting the MODIS dark target (DT) ocean algorithm to the MERSI-II sensor. A retrieval test is conducted on the 2019 MERSI-II data over the global ocean, and the retrieved AODs are validated against ground-based measurements from the automatic Aerosol Robotic Network (AERONET) and the shipborne Maritime Aerosol Network (MAN). The operational MODIS DT aerosol products are also used for comparison purposes. The results show that MERSI-II AOD granule retrievals are in good agreement with MODIS products, boasting high correlation coefficients (R) of up to 0.96 and consistent spatial distribution trends. Furthermore, the MERSI-II retrievals perform well in comparison to AERONET and MAN measurements, with high R-values (>0.86). However, the low-value retrievals from MERSI-II tend to be slightly overestimated compared to MODIS, despite both AODs displaying a positive bias. Notably, the monthly gridded AODs over the high latitudes of the northern and southern hemispheres suggest that MERSI-II exhibits greater stability in space and time, effectively reducing unrealistically high-value noise in the MODIS products. These results illustrate that the MERSI-II retrievals meet specific accuracy requirements by maintaining the algorithmic framework and most of the algorithmic assumptions, providing a crucial data supplement for aerosol studies and climate change.
引用
收藏
页码:2446 / 2463
页数:18
相关论文
共 68 条
[1]   A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces [J].
Bilal, Muhammad ;
Nichol, Janet E. ;
Bleiweiss, Max P. ;
Dubois, David .
REMOTE SENSING OF ENVIRONMENT, 2013, 136 :135-145
[2]  
Cai WJ, 2017, NAT CLIM CHANGE, V7, P257, DOI [10.1038/NCLIMATE3249, 10.1038/nclimate3249]
[3]   Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite [J].
Cao, Changyong ;
De Luccia, Frank J. ;
Xiong, Xiaoxiong ;
Wolfe, Robert ;
Weng, Fuzhong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02) :1142-1156
[4]   Multi-angle Imaging SpectroRadiometer (MISR) - Instrument description and experiment overview [J].
Diner, DJ ;
Beckert, JC ;
Reilly, TH ;
Bruegge, CJ ;
Conel, JE ;
Kahn, RA ;
Martonchik, JV ;
Ackerman, TP ;
Davies, R ;
Gerstl, SAW ;
Gordon, HR ;
Muller, JP ;
Myneni, RB ;
Sellers, PJ ;
Pinty, B ;
Verstraete, MM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1072-1087
[5]   A Comprehensive Description of Multi-Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications [J].
Dubovik, Oleg ;
Fuertes, David ;
Litvinov, Pavel ;
Lopatin, Anton ;
Lapyonok, Tatyana ;
Doubovik, Ivan ;
Xu, Feng ;
Ducos, Fabrice ;
Chen, Cheng ;
Torres, Benjamin ;
Derimian, Yevgeny ;
Li, Lei ;
Herreras-Giralda, Marcos ;
Herrera, Milagros ;
Karol, Yana ;
Matar, Christian ;
Schuster, Gregory L. ;
Espinosa, Reed ;
Puthukkudy, Anin ;
Li, Zhengqiang ;
Fischer, Juergen ;
Preusker, Rene ;
Cuesta, Juan ;
Kreuter, Axel ;
Cede, Alexander ;
Aspetsberger, Michael ;
Marth, Daniel ;
Bindreiter, Lukas ;
Hangler, Andreas ;
Lanzinger, Verena ;
Holter, Christoph ;
Federspiel, Christian .
FRONTIERS IN REMOTE SENSING, 2021, 2
[6]   Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols [J].
Eck, TF ;
Holben, BN ;
Reid, JS ;
Dubovik, O ;
Smirnov, A ;
O'Neill, NT ;
Slutsker, I ;
Kinne, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D24) :31333-31349
[7]   Machine learning algorithms for retrievals of aerosol and ocean color products from FY-3D MERSI-II instrument [J].
Fan, Yongzhen ;
Li, Shengqi ;
Han, Xiuzhen ;
Stamnes, Knut .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 250
[8]   Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5 [J].
Frey, Richard A. ;
Ackerman, Steven A. ;
Liu, Yinghui ;
Strabala, Kathleen I. ;
Zhang, Hong ;
Key, Jeffrey R. ;
Wang, Xuangi .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (07) :1057-1072
[9]   An improved dark target method for aerosol optical depth retrieval over China from Himawari-8 [J].
Gao, Ling ;
Chen, Lin ;
Li, Jun ;
Li, Chengcai ;
Zhu, Lin .
ATMOSPHERIC RESEARCH, 2021, 250
[10]   A Long-Term Historical Aerosol Optical Depth Data Record (1982-2011) Over China From AVHRR [J].
Gao, Ling ;
Chen, Lin ;
Li, Jun ;
Heidinger, Andrew K. ;
Xu, Xiaofeng ;
Qin, Shiguang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05) :2467-2480