Travel Demand Modeling and Estimation for High-Dimensional Mobility

被引:0
作者
Kim, Jeongyun [1 ]
Conti, Andrea [2 ,3 ]
Win, Moe Z. [4 ]
机构
[1] MIT, Wireless Informat & Network Sci Lab, Cambridge, MA 02139 USA
[2] Univ Ferrara, Dept Engn, I-44122 Ferrara, Italy
[3] Univ Ferrara, CNIT, I-44122 Ferrara, Italy
[4] MIT, Lab Informat & Decis Syst LIDS, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Probabilistic logic; Computational modeling; Estimation; Data models; Load modeling; Urban areas; Tensors; Intelligent transportation systems; mobility; spatiotemporal pattern; tensor decomposition; travel demand; TIME-SERIES; NETWORK; PREDICTION; PATTERNS; CITIES;
D O I
10.1109/TMC.2024.3435436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The massive amount of data related to spatiotemporal mobility offers new opportunities to understand human mobility with applications in various sectors, including transportation, logistics, and safety. However, the increase in the volume and in the dimension of mobility data makes it challenging to retrieve important information and critical features of spatiotemporal mobility. This paper develops a method to estimate probabilistic occurrences of travel demands considering interactions between origin, destination, and departure time. First, we reveal the important features in the complex structure of mobility data and identify mobility patterns. Then, we derive a data-driven model, accounting for mobility patterns, to estimate and predict travel demands. We quantify the accuracy of the proposed method for a case study using both New York city yellow taxi trip data and for-hire vehicles trip data over the entire city. Results show the accuracy of the proposed method compared to existing approaches.
引用
收藏
页码:1264 / 1277
页数:14
相关论文
共 63 条
[1]  
Agresti A, 2013, Categorical data analysis
[2]   Multi-stage deep probabilistic prediction for travel demand [J].
Alghamdi, Dhaifallah ;
Basulaiman, Kamal ;
Rajgopal, Jayant .
APPLIED INTELLIGENCE, 2022, 52 (10) :11214-11231
[3]   Public transport trip purpose inference using smart card fare data [J].
Alsger, Azalden ;
Tavassoli, Ahmad ;
Mesbah, Mahmoud ;
Ferreira, Luis ;
Hickman, Mark .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 87 :123-137
[4]  
[Anonymous], 2007, Understanding complex datasets: data mining with matrix decompositions
[5]   ACTIVITY-BASED APPROACHES TO TRAVEL ANALYSIS - CONCEPTUAL FRAMEWORKS, MODELS, AND RESEARCH PROBLEMS [J].
AXHAUSEN, KW ;
GARLING, T .
TRANSPORT REVIEWS, 1992, 12 (04) :323-341
[6]   A multi-pattern deep fusion model for short-term bus passenger flow forecasting [J].
Bai, Yun ;
Sun, Zhenzhong ;
Zeng, Bo ;
Deng, Jun ;
Li, Chuan .
APPLIED SOFT COMPUTING, 2017, 58 :669-680
[7]  
Barcelo Bugeda J., 2012, P TRB 91 ANN M COMP, P1
[8]   Smart cities of the future [J].
Batty, M. ;
Axhausen, K. W. ;
Giannotti, F. ;
Pozdnoukhov, A. ;
Bazzani, A. ;
Wachowicz, M. ;
Ouzounis, G. ;
Portugali, Y. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2012, 214 (01) :481-518
[9]   Forecasting Traffic Flow in Big Cities Using Modified Tucker Decomposition [J].
Bhanu, Manish ;
Priya, Shalini ;
Dandapat, Sourav Kumar ;
Chandra, Joydeep ;
Mendes-Moreira, Joao .
ADVANCED DATA MINING AND APPLICATIONS, ADMA 2018, 2018, 11323 :119-128
[10]  
Bhat C. R., 1999, Activity-Based Modeling of Travel Demand