共 53 条
- [1] Shlim D.R., The use of acetazolamide for the prevention of high-altitude illness, J Travel Med, 27, (2020)
- [2] Hackett P.H., Roach R.C., High-altitude illness, N Engl J Med, 345, pp. 107-114, (2001)
- [3] Agrawal A., Rathor R., Suryakumar G., Oxidative protein modification alters proteostasis under acute hypobaric hypoxia in skeletal muscles: a comprehensive in vivo study, Cell Stress Chaperones, 22, pp. 429-443, (2017)
- [4] Li Y., Ma Y., Wang K., Wang Y., Jin L., Using Composite phenotypes to reveal hidden physiological heterogeneity in high-altitude acclimatization in a Chinese, (2021)
- [5] Murray A.J., Montgomery H.E., Feelisch M., Grocott M.P.W., Martin D.S., Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications, Biochem Soc Trans, 46, pp. 599-607, (2018)
- [6] Li Y., Ma Y., Wang K., Et al., Using Composite phenotypes to reveal hidden physiological heterogeneity in high-altitude acclimatization in a Chinese Han Longitudinal Cohort, Phenomics, 1, pp. 3-14, (2021)
- [7] Willie C.K., Patrician A., Hoiland R.L., Et al., Influence of iron manipulation on hypoxic pulmonary vasoconstriction and pulmonary reactivity during ascent and acclimatization to 5050 m, J Physiol, 599, pp. 1685-1708, (2021)
- [8] Cotroneo E., Ashek A., Wang L., Et al., Iron homeostasis and pulmonary hypertension: iron deficiency leads to pulmonary vascular remodeling in the rat, Circ Res, 116, pp. 1680-1690, (2015)
- [9] Holdsworth D.A., Frise M.C., Bakker-Dyos J., Et al., Iron bioavailability and cardiopulmonary function during ascent to very high altitude, Eur Respir J, 56, (2020)
- [10] Goetze O., Schmitt J., Spliethoff K., Et al., Adaptation of iron transport and metabolism to acute high-altitude hypoxia in mountaineers, Hepatology, 58, pp. 2153-2162, (2013)