Some approximation properties in fractional Musielak-Sobolev spaces

被引:1
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 30 条
[1]  
Adams R.A., 2003, Pure and Applied Mathematics, V140
[2]  
[Anonymous], 1983, Analyse fonctionnelle. Theorie et applications
[3]   On a class of nonlocal problems in new fractional Musielak-Sobolev spaces [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2022, 101 (06) :1933-1952
[4]   EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. .
ADVANCES IN OPERATOR THEORY, 2019, 4 (02) :539-555
[5]   Embedding and extension results in fractional Musielak-Sobolev spaces [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed ;
Srati, Mohammed .
APPLICABLE ANALYSIS, 2023, 102 (01) :195-219
[6]  
Baalal A., 2018, INT J MATH ANAL, V12, P85
[7]  
BAALAL A, 2024, REND CIRC MAT PALERM, P1
[8]   DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS [J].
Baalal, Azeddine ;
Berghout, Mohamed .
ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) :308-324
[9]   On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications [J].
Bahrouni, Anouar ;
Missaoui, Hlel ;
Ounaies, Hichem .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
[10]   ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03) :379-389