Some approximation properties in fractional Musielak-Sobolev spaces

被引:0
作者
Baalal, Azeddine [1 ]
Berghout, Mohamed [2 ]
Ouali, El-Houcine [1 ]
机构
[1] Hassan II Univ, Fac Sci Ain Chock, Dept Math & Comp Sci, Rd Jadida Km 8,BP 5366, Maarif 20100, Casablanca, Morocco
[2] Hassan II Univ, Fac Sci Ben Msik, Dept Math & Comp Sci, Casablanca, Morocco
关键词
Fractional Musielak-Sobolev spaces; Modular spaces; Density properties; DENSITY PROPERTIES;
D O I
10.1007/s12215-024-01133-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we show some density properties of smooth and compactly supported functions in fractional Musielak-Sobolev spaces essentially extending the results of Fiscella et al. (Ann Acad Sci Fenn Math 40(1):235-253, 2015) obtained in the fractional Sobolev setting. The proofs of these properties are mainly based on a basic technique of convolution (which makes functions C infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>{\infty }$$\end{document}), joined with a cut-off (which makes their support compact), with some care needed in order not to exceed the original support.
引用
收藏
页数:19
相关论文
共 30 条
  • [1] Adams R., 1975, SOBOLEV SPACES
  • [2] On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    Srati, M.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (06) : 1933 - 1952
  • [3] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [4] Embedding and extension results in fractional Musielak-Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    Srati, Mohammed
    [J]. APPLICABLE ANALYSIS, 2023, 102 (01) : 195 - 219
  • [5] Baalal A., 2018, Int. J. Math. Anal. (N.S.), V12, P85, DOI DOI 10.12988/IJMA.2018.815
  • [6] BAALAL A, 2024, REND CIRC MAT PALERM, P1
  • [7] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Baalal, Azeddine
    Berghout, Mohamed
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) : 308 - 324
  • [8] On the fractional Musielak-Sobolev spaces in Rd: Embedding results & applications
    Bahrouni, Anouar
    Missaoui, Hlel
    Ounaies, Hichem
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (01)
  • [9] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [10] BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS
    Bahrouni, Sabri
    Ounaies, Hichem
    Tavares, Leandro S.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) : 681 - 695