Characterization for boundedness of some commutators of the multilinear fractional Calderón-Zygmund operators with Dini type kernel

被引:0
作者
Zhao, W. [1 ]
Wu, J. [2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Mudanjiang Normal Univ, Dept Math, Mudanjiang 157011, Peoples R China
关键词
commutator; Calder & oacute; n-Zygmund operator; Lipschitz space; variable exponent Lebesgue space; Dini type kernel; WEIGHTED NORM INEQUALITIES; VARIABLE EXPONENT; MAXIMAL OPERATOR; LIPSCHITZ FUNCTIONS; INTEGRAL-OPERATORS; DIRICHLET PROBLEM; SPACES; LEBESGUE; EQUATIONS;
D O I
10.1007/s10476-025-00065-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha}$$\end{document} be an m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-linear fractional Calder & oacute;n-Zygmund operator with kernel of mild regularity, and b ->=(b1,b2,& mldr;,bm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec{b} =(b_{1},b_{2} ,\ldots,b_{m})$$\end{document} be a collection of locally integrable functions. In this paper, the main purpose is to establish some estimates for the mapping property of the multilinear commutators T alpha,Sigma b ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{{\alpha,\Sigma \vec{b}}}$$\end{document} in the context of the variable exponent function spaces. The key tools used are the Fourier series and the pointwise estimates involving the sharp maximal operator of the multilinear commutator and certain associated maximal operators.
引用
收藏
页码:323 / 362
页数:40
相关论文
共 48 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context [J].
Adrian, Cabral ;
Gladis, Pradolini ;
Wilfredo, Ramos .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) :620-636
[3]   Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type [J].
Bernardis, Ana ;
Hartzstein, Silvia ;
Pradolini, Gladis .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :825-846
[4]   GENERALIZED MAXIMAL FUNCTIONS AND RELATED OPERATORS ON WEIGHTED MUSIELAK-ORLICZ SPACES [J].
Bernardis, Ana ;
Dalmasso, Estefania ;
Pradolini, Gladis .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) :23-50
[5]   Composition of fractional Orlicz maximal operators and A 1-weights on spaces of homogeneous type [J].
Bernardis, Ana L. ;
Pradolini, Gladis ;
Lorente, Maria ;
Silvina Riveros, Maria .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) :1509-1518
[6]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[7]  
Coifman R., 1978, ANN I FOURIER, V28, P177
[8]   COMMUTATORS OF SINGULAR INTEGRALS AND BILINEAR SINGULAR INTEGRALS [J].
COIFMAN, RR ;
MEYER, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 212 (OCT) :315-331
[9]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[10]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239