Modular identities for some special cases of Ramanujan's general continued fraction

被引:0
作者
Bhat, Shruthi C. [1 ]
Srivastava, H. M. [2 ,3 ,4 ,5 ,6 ,7 ]
Kumar, B. R. Srivatsa [1 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Math, Manipal 576104, Karnataka, India
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[6] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[7] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
关键词
Continued fractions; Modular equations; Theta functions; Jacobi's triple-product identity; Dedekind's eta-function; Rogers-Ramanujan continued fraction; Ramanujan-Selberg continued fraction; Ramanujan-G & ouml; llnitz-Gordon continued fraction; THETA-FUNCTION IDENTITIES; EQUATIONS;
D O I
10.1007/s13398-025-01706-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we first introduce the continued fractions K(q), L(q) and M(q), which are based on the Ramanujan-Selberg continued fraction C(q). We then obtain several modular identities which connect K(q) with K(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(-q)$$\end{document} and K(qi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K(q<^>i)$$\end{document}(i=2,3,5,7)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i=2,3,5,7)$$\end{document}, L(q) with L(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(-q)$$\end{document} and L(qj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(q<^>j)$$\end{document}(j=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\;(j=2,3)$$\end{document}, M(q) with M(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(-q)$$\end{document} and M(qj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(q<^>j)$$\end{document}(j=2,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(j=2,3)$$\end{document}, and C(q) with C(-q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C(-q)$$\end{document}. We also provide some algebraic results associated with K(q) and L(q). In addition, as an application of our results, we deduce a few fascinating colored partitions which also validate the results.
引用
收藏
页数:13
相关论文
共 27 条
  • [1] Adiga C, 2004, INDIAN J PURE AP MAT, V35, P1047
  • [2] ROGERS-RAMANUJAN IDENTITIES FOR PARTITIONS WITH N COPIES OF N
    AGARWAL, AK
    ANDREWS, GE
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (01) : 40 - 49
  • [3] Andrews George E., 2005, Ramanujan's Lost Notebook, DOI [DOI 10.1007/0-387-28124-X, 10.1007/0-387-28124-X]
  • [4] Baruah N.D., 2006, Int. J. Math. Math. Sci., P1
  • [5] Some new proofs of modular relations for the Gollnitz-Gordon functions
    Baruah, Nayandeep Deka
    Bora, Jonali
    Saikia, Nipen
    [J]. RAMANUJAN JOURNAL, 2008, 15 (02) : 281 - 301
  • [6] Modular equations for Ramanujan's cubic continued fraction
    Baruah, ND
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) : 244 - 255
  • [7] Berndt B. C., 1991, Ramanujans Notebooks, DOI DOI 10.1007/978-1-4612-0965-2
  • [8] Finite and infinite Rogers-Ramanujan continued fractions in Ramanujan's lost notebook
    Berndt, Bruce C.
    Kang, Soon-Yi
    Sohn, Jaebum
    [J]. JOURNAL OF NUMBER THEORY, 2015, 148 : 112 - 120
  • [9] Berndt Bruce C., 1991, RAMANUJANS NOTEBOOKS, DOI DOI 10.1007/978-1-4612-0965-2
  • [10] Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients
    Cao, Jian
    Srivastava, Hari M.
    Zhou, Hong-Li
    Arjika, Sama
    [J]. MATHEMATICS, 2022, 10 (04)