共 88 条
- [11] Grueso S., Viejo-Sobera R., Machine Learning Methods for Predicting Progression from Mild Cognitive Impairment to Alzheimer’s Disease Dementia: A Systematic Review, (2021)
- [12] ADNI GO, ADNI 2 and ADNI 3, (2004)
- [13] (2007)
- [14] Hett K., Ta V.T., Manjon J.V., Coupe P., Adaptive fusion of texture-based grading for Alzheimer’s disease classification, Comput Med Imaging Graph, 70, pp. 8-16, (2018)
- [15] Liu M., Zhang J., Adeli E., Shen D., Landmark-based deep multi-instance learning for brain disease diagnosis, Med Image Anal, 43, pp. 157-168, (2018)
- [16] Chen Y., Jia H., Huang Z., Xia Y., Early identification of Alzheimer’s disease using an ensemble of 3D convolutional neural networks and magnetic resonance imaging, Lect Notes Comput Science (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 10989 LNAI, pp. 303-311, (2018)
- [17] Raza M., Awais M., Ellahi W., Et al., Diagnosis and monitoring of Alzheimer’s patients using classical and deep learning techniques, Expert Syst Appl, 136, pp. 353-364, (2019)
- [18] Basheera S., Sai Ram M.S., Convolution neural network–based Alzheimer’s disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation, Alzheimer’s Dement Transl Res Clin Interv, 5, pp. 974-986, (2019)
- [19] Kruthika K.R., Rajeswari M.H.D., Erratum: CBIR system using capsule networks and 3D CNN for Alzheimer’s disease diagnosis (informatics in medicine unlocked (2019) 14 (59–68), (S235291481830176X), (10.1016/j.imu.2018.12.001)), Inform Med Unlocked, 16, pp. 59-68, (2019)
- [20] Oh K., Chung Y.C., Kim K.W., Et al., Classification and visualization of Alzheimer’s disease using volumetric convolutional neural network and transfer learning, Sci Rep, 9, pp. 1-16, (2019)