Improved Uniform Error Bounds on a Lawson-type Exponential Integrator Method for Long-Time Dynamics of the Nonlinear Double Sine-Gordon Equation

被引:0
作者
Zhang, Ling [1 ,2 ]
Song, Huailing [1 ,2 ]
Yi, Wenfan [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
[2] Hunan Univ, Greater Bay Area Inst Innovat, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Double Sine-Gordon equation; Long-time dynamics; Lawson-type exponential integrator; Regularity compensation oscillatory; Improved uniform error bounds; TANH METHOD;
D O I
10.1007/s10915-024-02752-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Lawson-type exponential integrator combined with the Fourier pseudo-spectral method is provided for the nonlinear Double Sine-Gordon equation (DSGE), while the nonlinearityis characterized by beta/ETXwith small parameter epsilon is an element of(0,1]and interaction parameter beta is an element of (0,+ infinity). In comparison to the Sine-Gordon equation, DSGE has many properties of solitons as well as its own unique new features. This is the first work to numerically simulate the physical phenomena arising from DSG kinks collisions. The improved uniform error bounds are proved by using the regularity compensation oscillatory (RCO) technique, which areO(alpha(2)tau + h(m))up to the long time at T-is an element of= T/alpha(2), where alpha = is an element of for beta >= 1 and alpha = is an element of/beta for 0 < is an element of < beta < 1. Based on the uniform bounds, the error estimation for the discrete energy is derived. Furthermore, the improved error bounds are extended to two oscillatory DSGEs with O(is an element of(2))and O(is an element of(2)/beta(2))wavelength in time. Numerical examples are provided to illustrate the accuracy and discrete energy property of the proposed method.
引用
收藏
页数:30
相关论文
共 37 条
[1]   Exact solutions to the sine-Gordon equation [J].
Aktosun, Tuncay ;
Demontis, Francesco ;
van der Mee, Cornelis .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
[2]  
Atanasova PK., 2011, Math. Models Comput. Simul, V3, P389, DOI [10.1134/S2070048211030033, DOI 10.1134/S2070048211030033]
[3]   IMPROVED UNIFORM ERROR BOUNDS OF THE TIME-SPLITTING METHODS FOR THE LONG-TIME (NONLINEAR) SCHRODINGER EQUATION [J].
Bao, W. E. I. Z. H. U. ;
Cai, Y. O. N. G. Y. O. N. G. ;
Feng, Y. U. E. .
MATHEMATICS OF COMPUTATION, 2023, 92 (341) :1109-1139
[4]   IMPROVED UNIFORM ERROR BOUNDS ON TIME-SPLITTING METHODS FOR LONG-TIME DYNAMICS OF THE NONLINEAR KLEIN-GORDON EQUATION WITH WEAK NONLINEARITY [J].
Bao, Weizhu ;
Cai, Yongyong ;
Feng, Yue .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) :1962-1984
[5]   Long Time Error Analysis of Finite Difference Time Domain Methods for the Nonlinear Klein-Gordon Equation with Weak Nonlinearity [J].
Bao, Weizhu ;
Feng, Yue ;
Yi, Wenfan .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) :1307-1334
[6]   New exact solutions of the double sine-Gordon equation using symbolic computations [J].
Bin, He ;
Qing, Meng ;
Yao, Long ;
Rui Weiguo .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) :1334-1346
[7]  
Bullough R. K., 1980, Solitons, P107, DOI 10.1007/978-3-642-81448-8_3
[8]  
Delort JM, 2004, INT MATH RES NOTICES, V2004, P1897
[9]   DOUBLE-SINE-GORDON SOLITONS IN 2-DIMENSIONAL CRYSTALS [J].
DIKANDE, AM ;
KOFANE, TC .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (10) :L141-L146
[10]   Solutions for the Double Sine-Gordon Equation by Exp-Function, Tanh, and Extended Tanh Methods [J].
Domairry, G. ;
Davodi, Amin G. ;
Davodi, Arash G. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) :384-398