Chromosome-level genome assembly of Pteroceltis tatarinowii provides new insights into evolution and fiber biosynthesis

被引:0
|
作者
Qiao, Qian [1 ,2 ]
Wang, Jiawei [1 ]
Wang, Jiangyong [1 ]
Yan, Yu [3 ]
Sun, Zhongkui [3 ]
Zhang, Lin [3 ]
Liu, Qingzhong [1 ]
Cheng, Tiantian [3 ]
Liu, Yan [2 ]
Gao, Yun [4 ]
机构
[1] Shandong Acad Agr Sci, Shandong Inst Pomol, Tai An 271000, Shandong, Peoples R China
[2] Beijing Forestry Univ, Coll Landscape Architecture, Beijing 100091, Peoples R China
[3] Taishan Forestry Sci Inst, Tai An 271000, Shandong, Peoples R China
[4] Shandong Agr Univ, Coll Plant Protect, Tai An 271018, Shandong, Peoples R China
关键词
Pteroceltis tatarinowii; Genome; Phylogeny; Evolution; Cellulose; Lignin; DATABASE; ULMACEAE; TREE; PHYLOGENETICS; CELTIDACEAE; ALIGNMENT; SYNTHASE; DROUGHT; ENZYMES; FAMILY;
D O I
10.1016/j.indcrop.2024.120316
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Pteroceltis tatarinowii, a unique single-species plant and fibrous tree in China, is the raw material for making Xuan paper. However, the lack of a complete genome sequence has limited both basic and applied research on P. tatarinowii. We describe two high-quality chromosome-level haplotype genomes with lengths of 366.41 Mb and 362.96 Mb, with 38,502 and 43,005 predicted genes, respectively. Genome analyses supported the classification of P. tatarinowii into the Cannabaceae family and suggested that it experienced only 1 WGD event. The genes involved in cellulose and lignin synthesis expanded significantly in the genome, which reflected the fiber properties of P. tatarinowii. The cellulose and lignin metabolic pathways identified via transcriptome showed that the CELB, BGLU and GYS genes may play key roles in cellulose synthesis and that the Prx and UGT72E genes may play key roles in lignin synthesis. Further transgenic verification revealed that the CELB-1 gene negatively regulates cellulose synthesis, the CELB-2 gene positively regulates cellulose synthesis, and the Prx-1 and Prx-2 genes positively regulate lignin synthesis. This work provides biological evidence for the classification and evolution of P. tatarinowii, and provides a cornerstone for understanding the underlying genetics regulating the synthesis of fibers in P. tatarinowii.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A chromosome-level genome assembly provides insights into Cornus wilsoniana evolution, oil biosynthesis, and floral bud development
    He, Zhenxiang
    Chao, Haoyu
    Zhou, Xinkai
    Ni, Qingyang
    Hu, Yueming
    Yu, Ranran
    Wang, Minghuai
    Li, Changzhu
    Chen, Jingzhen
    Chen, Yunzhu
    Chen, Yong
    Cui, Chunyi
    Zhang, Liangbo
    Chen, Ming
    Chen, Dijun
    HORTICULTURE RESEARCH, 2023, 10 (11)
  • [22] Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis
    Yan, Ning
    Yang, Ting
    Yu, Xiu-Ting
    Shang, Lian-Guang
    Guo, De-Ping
    Zhang, Yu
    Meng, Lin
    Qi, Qian-Qian
    Li, Ya-Li
    Du, Yong-Mei
    Liu, Xin-Min
    Yuan, Xiao-Long
    Qin, Peng
    Qiu, Jie
    Qian, Qian
    Zhang, Zhong-Feng
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [23] Chromosome-level genome assembly of Amomum tsao-ko provides insights into the biosynthesis of flavor compounds
    Li, Ping
    Bai, Genxiang
    He, Jiangbin
    Liu, Bo
    Long, Junru
    Morcol, Taylan
    Peng, Weiyao
    Quan, Fan
    Luan, Xinbo
    Wang, Zhenzhen
    Zhao, Yi
    Cha, Yunsheng
    Liu, Yuanyuan
    He, Juncai
    Wu, Lianzhang
    Yang, Yi
    Kennelly, Edward J.
    Yang, Quan
    Sun, Lirong
    Chen, Zepeng
    Qian, Wanqiang
    Hu, Jian
    Yan, Jian
    HORTICULTURE RESEARCH, 2022, 9
  • [24] Chromosome-Level Genome Assembly Provides New Insights into Genome Evolution and Tuberous Root Formation of Potentilla anserina
    Gan, Xiaolong
    Li, Shiming
    Zong, Yuan
    Cao, Dong
    Li, Yun
    Liu, Ruijuan
    Cheng, Shu
    Liu, Baolong
    Zhang, Huaigang
    GENES, 2021, 12 (12)
  • [25] Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation
    Li, Xinchun
    Bai, Yitian
    Dong, Zhen
    Xu, Chengxun
    Liu, Shikai
    Yu, Hong
    Kong, Lingfeng
    Li, Qi
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2023, 45
  • [26] A chromosome-level genome assembly provides new insights into paternal genome elimination in the cotton mealybugPhenacoccus solenopsis
    Li, Meizhen
    Tong, Haojie
    Wang, Shuping
    Ye, Wanyi
    Li, Zicheng
    Omar, Mohamed A. A.
    Ao, Yan
    Ding, Simin
    Li, Zihao
    Wang, Ying
    Yin, Chuanlin
    Zhao, Xianxin
    He, Kang
    Liu, Feiling
    Chen, Xi
    Mei, Yang
    Walters, James R.
    Jiang, Mingxing
    Li, Fei
    MOLECULAR ECOLOGY RESOURCES, 2020, 20 (06) : 1733 - 1747
  • [27] A chromosome-level genome assembly of the Henosepilachna vigintioctomaculata provides insights into the evolution of ladybird beetles
    Zhu, Wenbo
    Chi, Shengqi
    Wang, Yanchun
    Li, Haorong
    Wang, Zhongkai
    Gu, Songdong
    Sun, Ting
    Xiang, Hui
    You, Ping
    Ren, Yandong
    DNA RESEARCH, 2023, 30 (01)
  • [28] Chromosome-Level Genome Assembly of Acanthogobius ommaturus Provides Insights Into Evolution and Lipid Metabolism
    Pan, Yu
    Sun, Zhicheng
    Gao, Tianxiang
    Zhao, Linlin
    Song, Na
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [29] The chromosome-level genome of Centella asiatica provides insights into triterpenoid biosynthesis
    Wang, Yue
    Huang, Ding
    Luo, Jiajia
    Yao, Shaochang
    Chen, Jianhua
    Li, Liangbo
    Geng, Jingjing
    Mo, Yanlan
    Ming, Ruhong
    Liu, Jihong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 222
  • [30] Chromosome-level genome assembly provides insights into the genetic diversity, evolution, and flower development of Prunus conradinae
    Jiu, Songtao
    Manzoor, Muhammad Aamir
    Chen, Baozheng
    Xu, Yan
    Abdullah, Muhammad
    Zhang, Xinyu
    Lv, Zhengxin
    Zhu, Jijun
    Cao, Jun
    Liu, Xunju
    Wang, Jiyuan
    Liu, Ruie
    Wang, Shiping
    Dong, Yang
    Zhang, Caixi
    MOLECULAR HORTICULTURE, 2024, 4 (01):