Identification of sentinel lymph node macrometastasis in breast cancer by deep learning based on clinicopathological characteristics

被引:0
作者
Zhang, Daqu [1 ]
Svensson, Miriam [2 ]
Eden, Patrik [1 ]
Dihge, Looket [2 ,3 ]
机构
[1] Lund Univ, Ctr Environm & Climate Sci, Div Computat Sci Hlth & Environm, Lund, Sweden
[2] Lund Univ, Dept Clin Sci Lund, Div Surg, Lund, Sweden
[3] Skane Univ Hosp, Dept Plast & Reconstruct Surg, Malmo, Sweden
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Breast cancer; Lymphatic metastasis; Sentinel lymph node; Deep learning; Clinical decision support; AMERICAN-SOCIETY; OLDER PATIENTS; STAGE; BIOPSY; METASTASIS; NOMOGRAM; AXILLA; MAMMOGRAPHY; DISSECTION; ULTRASOUND;
D O I
10.1038/s41598-024-78040-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The axillary lymph node status remains an important prognostic factor in breast cancer, and nodal staging using sentinel lymph node biopsy (SLNB) is routine. Randomized clinical trials provide evidence supporting de-escalation of axillary surgery and omission of SLNB in patients at low risk. However, identifying sentinel lymph node macrometastases (macro-SLNMs) is crucial for planning treatment tailored to the individual patient. This study is the first to explore the capacity of deep learning (DL) models to identify macro-SLNMs based on preoperative clinicopathological characteristics. We trained and validated five multivariable models using a population-based cohort of 18,185 patients. DL models outperform logistic regression, with Transformer showing the strongest results, under the constraint that the sensitivity is no less than 90%, reflecting the sensitivity of SLNB. This highlights the feasibility of noninvasive macro-SLNM prediction using DL. Feature importance analysis revealed that patients with similar characteristics exhibited different nodal status predictions, indicating the need for additional predictors for further improvement.
引用
收藏
页数:15
相关论文
共 88 条
  • [1] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [2] Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine
    Ahmed, Zeeshan
    Mohamed, Khalid
    Zeeshan, Saman
    Dong, Xinqi
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
  • [3] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [4] Amin MB, 2017, AJCC Cancer Staging Manual, V8th, P1024
  • [5] [Anonymous], 2016, Choosing wisely: Society of surgical oncology
  • [6] Current and future burden of breast cancer: Global statistics for 2020 and 2040
    Arnold, Melina
    Morgan, Eileen
    Rumgay, Harriet
    Mafra, Allini
    Singh, Deependra
    Laversanne, Mathieu
    Vignat, Jerome
    Gralow, Julie R.
    Cardoso, Fatima
    Siesling, Sabine
    Soerjomataram, Isabelle
    [J]. BREAST, 2022, 66 : 15 - 23
  • [7] Association of Breast Surgery, 2015, Management of the Malignant Axilla in Early Breast Cancer
  • [8] An axilla scoring system to predict non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement
    Barranger, E
    Coutant, C
    Flahault, A
    Delpech, Y
    Darai, E
    Uzan, S
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2005, 91 (02) : 113 - 119
  • [9] Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation
    Bevilacqua, Jose Luiz B.
    Kattan, Michael W.
    Fey, Jane V.
    Cody, Hiram S., III
    Borgen, Patrick I.
    Van Zee, Kimberly J.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (24) : 3670 - 3679
  • [10] Management of the Axilla in Early-Stage Breast Cancer: Ontario Health (Cancer Care Ontario) and ASCO Guideline
    Brackstone, Muriel
    Baldassarre, Fulvia G.
    Perera, Francisco E.
    Cil, Tulin
    Mac Gregor, Mariana Chavez
    Dayes, Ian S.
    Engel, Jay
    Horton, Janet K.
    King, Tari A.
    Kornecki, Anat
    George, Ralph
    SenGupta, Sandip K.
    Spears, Patricia A.
    Eisen, Andrea F.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (27) : 3056 - +