In situ X-ray diffraction studies on nominal composition of C2Li under high pressure and temperature

被引:0
作者
Mukai, Kazuhiko [1 ]
Uyama, Takeshi [1 ]
Inoue, Takao [1 ]
Saitoh, Hiroyuki [2 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
[2] Natl Inst Quantum Sci & Technol, Kansai Inst Photon Sci, 1-1-1 Kouto, Sayo, Hyogo 6795148, Japan
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
GRAPHITE-INTERCALATION COMPOUNDS; NEGATIVE ELECTRODE; LITHIUM; SUPERCONDUCTIVITY; SUSCEPTIBILITY; COMPOUND; BEHAVIOR; LIC2;
D O I
10.1038/s41598-024-77744-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superdense phase between graphite and Li metal, C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li, has been significant in the research on both lithium-ion batteries (LIBs) and graphite intercalated compounds (GICs). However, a detailed method for synthesizing C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li remains unknown owing to the limited information regarding C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li and difficulties in distinguishing C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li from C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{6}$$\end{document}Li. Thus, we performed in situ X-ray diffraction measurements on samples with the nominal composition of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li under high pressures and temperatures of up to 10 GPa and 400 degrees C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }\hbox {C}$$\end{document}, respectively. We employed two types of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li samples; one was a mixture of C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{6}$$\end{document} graphite powder and Li metal (C6+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}+3$$\end{document}Li), and the other was a mixture of C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{6}$$\end{document}Li and Li metal in which the C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{6}$$\end{document}Li was prepared by the electrochemical discharge (reduction) reaction that occurs in LIBs. Considering changes in the d-value based on the 001 diffraction peak from C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{6}$$\end{document}Li or C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li, C6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{6}$$\end{document}Li + 2Li is suitable for synthesizing C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{2}$$\end{document}Li, although the nonaqueous electrolyte used for the electrochemical reaction should be removed to avoid structural transformations to lower-stage compounds such as C12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{12}$$\end{document}Li and C18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}_{18}$$\end{document}Li during the heating. These findings pave the way toward a method for synthesizing C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}Li, which could increase the energy density of LIBs and establish GICs with novel physical and electronic properties.
引用
收藏
页数:10
相关论文
共 32 条
[1]   ON THE SUPERCONDUCTIVITY OF GRAPHITE-INTERCALATION COMPOUNDS WITH SODIUM [J].
BELASH, IT ;
BRONNIKOV, AD ;
ZHARIKOV, OV ;
PALNICHENKO, AV .
SOLID STATE COMMUNICATIONS, 1987, 64 (12) :1445-1447
[2]   SUPERCONDUCTIVITY OF GRAPHITE-INTERCALATION COMPOUND WITH LITHIUM C2LI [J].
BELASH, IT ;
BRONNIKOV, AD ;
ZHARIKOV, OV ;
PALNICHENKO, AV .
SOLID STATE COMMUNICATIONS, 1989, 69 (09) :921-923
[3]   ON THE SUPERCONDUCTIVITY OF HIGH-PRESSURE PHASES IN A POTASSIUM GRAPHITE-INTERCALATION COMPOUND C8K [J].
BELASH, JT ;
ZHARIKOV, OV ;
PALNICHENKO, AV .
SOLID STATE COMMUNICATIONS, 1987, 63 (02) :153-155
[4]   Super dense LiC2 as a high capacity Li intercalation anode [J].
Bindra, C ;
Nalimova, VA ;
Sklovsky, DE ;
Benes, Z ;
Fischer, JE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) :2377-2380
[5]  
CONARD J, 1994, MOL CRYST LIQ CRYS A, V244, pA25
[6]   Tailored Synthesis of the Narrowest Zigzag Graphene Nanoribbon Structure by Compressing the Lithium Acetylide under High Temperature [J].
Dong, Xiao ;
Wang, Lijuan ;
Li, Kuo ;
Zheng, Haiyan ;
Wang, Yajie ;
Meng, Yue ;
Shu, Haiyun ;
Mao, Ho-Kwang ;
Feng, Shaomin ;
Jin, Changqing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (35) :20506-20512
[7]  
Dresselhaus MS, 2002, ADV PHYS, V51, P1, DOI [10.1080/00018730110113644, 10.1080/00018738100101367]
[8]   Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery [J].
Endo, M ;
Nishimura, Y ;
Takahashi, T ;
Takeuchi, K ;
Dresselhaus, MS .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) :725-728
[9]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[10]   CRYSTALLINE-STRUCTURE OF LI-GRAPHITE AND CS-GRAPHITE SUPERDENSE PHASES [J].
GUERARD, D ;
NALIMOVA, VA .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1994, 244 :263-268