A Method for Mining Spatial Co-location Patterns Based on Contextual Similarity Among Categories

被引:0
|
作者
Zhou, Xusheng [1 ]
Tan, Yongbin [1 ,2 ,4 ,5 ,6 ]
Yu, Zhonghai [3 ]
Li, Xiaolong [1 ,2 ,4 ,5 ,6 ]
Su, Youneng [7 ]
Wu, Jun [1 ]
机构
[1] East China Univ Technol, Sch Surveying & Geoinformat Engn, Nanchang, Peoples R China
[2] Jiangxi Key Lab Watershed Ecol Proc & Informat, Nanchang, Peoples R China
[3] Jinan Geotech Invest & Surveying Res Inst, Jinan, Peoples R China
[4] CNNC Engn Res Ctr 3D Geog Informat, Nanchang, Peoples R China
[5] Minist Nat Resources, Key Lab Mine Environm Monitoring & Improving Poyan, Nanchang, Peoples R China
[6] Nanchang Key Lab Landscape Proc & Terr Spatial Eco, Nanchang, Peoples R China
[7] Informat Engn Univ, Geospatial Informat Inst, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
POI; Spatial co-location pattern; Spatial data; Urban;
D O I
10.1007/s41651-024-00211-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the field of Geographic Information Science (GIS), the identification of spatial co-location patterns is of paramount importance for the acquisition of insights into complex geographical phenomena and the provision of decision support. However, the rapid growth of spatial datasets and the increasing complexity of data relationships present significant challenges to existing mining algorithms. The majority of these methods rely on co-occurrence frequency information to mine co-location patterns, simplifying the complex relationships between instances and the holistic information of local contexts, which leads to insufficient accuracy or information omission in mining results. To address this issue, we propose a spatial co-location pattern mining approach based on contextual similarity among categories. This method employs a novel embedding technique to obtain detailed local context information through multiple feature extractors and convert it into low-dimensional embeddings. On this basis, local context information under the same category is fused to obtain the features of the contexts where the categories are located, and then, regional feature similarity is calculated to achieve efficient spatial co-location pattern mining. The proposed method was validated using simulated data and field data from Xiamen Island, and it successfully identified multiple spatial co-location patterns, demonstrating its feasibility. Comparative experiments with other methods also showed that the proposed method is superior and more robust in mining spatial co-location patterns.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Mining strong symbiotic patterns hidden in spatial prevalent co-location patterns
    Lu, Junli
    Wang, Lizhen
    Fang, Yuan
    Zhao, Jiasong
    KNOWLEDGE-BASED SYSTEMS, 2018, 146 : 190 - 202
  • [22] Mining Spatial High Utility Co-location Patterns Based on Feature Utility Ratio
    Wang X.-X.
    Wang L.-Z.
    Chen H.-M.
    Fang Y.
    Yang P.-Z.
    Jisuanji Xuebao/Chinese Journal of Computers, 2019, 42 (08): : 1721 - 1738
  • [23] Mining Co-Location Core Patterns in Spatial Data Sets Based on the Voronoi Diagram
    Zou M.-Q.
    Wang L.-Z.
    Wu P.-P.
    Yang P.-Z.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (09): : 1908 - 1925
  • [24] Maximal Instance Algorithm for Fast Mining of Spatial Co-Location Patterns
    Zhou, Guoqing
    Li, Qi
    Deng, Guangming
    REMOTE SENSING, 2021, 13 (05) : 1 - 20
  • [25] Mining Significant Co-location Patterns From Spatial Regional Objects
    Long, Yurong
    Yang, Peizhong
    Wang, Lizhen
    2019 20TH INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2019), 2019, : 479 - 484
  • [26] CODEM: A Novel Spatial Co-location and De-location Patterns Mining Algorithm
    Wan, You
    Zhou, Jiaogen
    Bian, Fuling
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 576 - +
  • [27] A Parallel Spatial Co-location Mining Algorithm Based on MapReduce
    Yoo, Jin Soung
    Boulware, Douglas
    Kimmey, David
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 25 - 31
  • [28] Spatial co-location pattern mining based on graph structure
    Wang J.
    Ai T.
    Wu H.
    Xu H.
    Li G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (04): : 724 - 735
  • [29] A framework of Spatial Co-location Mining on MapReduce
    Yoo, Jin Soung
    Boulware, Douglas
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [30] Mining regional co-location patterns with kNNG
    Qian, Feng
    Chiew, Kevin
    He, Qinming
    Huang, Hao
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 42 (03) : 485 - 505