共 50 条
Development and validation of machine learning-based prediction model for outcome of cardiac arrest in intensive care units
被引:0
|作者:
Ni, Peifeng
[1
,2
]
Zhang, Sheng
[3
]
Zhang, Gensheng
[4
]
Zhang, Weidong
[2
,5
]
Zhang, Hongwei
[2
]
Zhu, Ying
[2
]
Hu, Wei
[2
]
Diao, Mengyuan
[1
,2
]
机构:
[1] Zhejiang Univ, Dept Crit Care Med, Sch Med, 866 Yuhangtang Rd, Hangzhou 310000, Zhejiang, Peoples R China
[2] Westlake Univ, Hangzhou Peoples Hosp 1, Dept Crit Care Med, Sch Med, 261 Huansha Rd, Hangzhou 310000, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Dept Crit Care Med, 197 Ruijin 2nd Rd, Shanghai 200000, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 2, Dept Crit Care Med, Sch Med, 88 Jiefang Rd, Hangzhou 310000, Peoples R China
[5] Zhejiang Chinese Med Univ, Clin Sch 4, Dept Crit Care Med, 548 Binwen Rd, Hangzhou 310000, Zhejiang, Peoples R China
来源:
SCIENTIFIC REPORTS
|
2025年
/
15卷
/
01期
关键词:
Cardiac arrest;
Mortality;
Machine learning;
Categorical boosting;
SHapley additive explanations;
MIMIC-IV database;
RESUSCITATION;
ASSOCIATION;
SURVIVAL;
GUIDELINES;
RECOVERY;
PRESSURE;
FAILURE;
SUPPORT;
SCORE;
LIFE;
D O I:
10.1038/s41598-025-93182-3
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Cardiac arrest (CA) poses a significant global health challenge and often results in poor prognosis. We developed an interpretable and applicable machine learning (ML) model for predicting in-hospital mortality of CA patients who survived more than 72 h. A total of 721 patients were extracted from the Medical Information Mart for Intensive Care IV database, divided into the training set (n = 576) and the internal validation set (n = 145). The external validation set containing 856 cases were collected from four tertiary hospitals in Zhejiang Province. The primary outcome was in-hospital mortality. Eleven ML algorithms were utilized to establish prediction models based on data from 72 h after return of spontaneous circulation (ROSC). The results indicate that the CatBoost model exhibited the best performance at 72 h. Eleven variables were ultimately selected as key features by recursive feature elimination (RFE) to construct a compact model. The final model achieved the highest AUC of 0.86 (0.80, 0.92) in the internal validation and 0.76 (0.73, 0.79) in the external validation. SHAP summary plots and force plots visually explained the predicted outcomes. In conclusion, 72-h CatBoost showed promising performance in predicting in-hospital mortality of CA patients who survived more than 72 h. The model still requires further optimization and improvement.
引用
收藏
页数:12
相关论文