An improved fractional predictor-corrector method for nonlinear fractional differential equations with initial singularity

被引:1
作者
Huang, Jianfei [1 ]
Lv, Junlan [1 ]
Arshad, Sadia [2 ]
机构
[1] Yangzhou Univ, Coll Math Sci, Yangzhou 225002, Peoples R China
[2] COMSATS Univ Islamabad, Lahore Campus, Lahore, Pakistan
基金
中国国家自然科学基金;
关键词
nonlinear fractional differential equation; initial singularity; variable transformation; predictor-corrector method; error estimate; CONVOLUTION QUADRATURE; NUMERICAL-SOLUTION; ERROR ANALYSIS; CONVERGENCE;
D O I
10.1007/s13540-025-00371-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution and source term of nonlinear fractional differential equations (NFDEs) with initial values generally have the initial singularity. As is known that numerical methods for NFDEs usually occur the phenomenon of order reduction due to the existence of initial singularity. In this paper, an improved fractional predictor-corrector (PC) method is developed for NFDEs based on the technique of variable transformation. This improved fractional PC method can achieve the optimal convergence order, i.e., the 1+alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\alpha $$\end{document} order convergence rate for fractional order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, of the classical fractional PC method under the high smoothness requirement on the solution and source term. Furthermore, the detailed error analysis also exhibits the relationship between the convergence rate of the improved fractional PC method and the regularities of the solution and source term. Finally, the theoretical error estimate is verified through numerical experiments.
引用
收藏
页码:453 / 472
页数:20
相关论文
共 28 条
[1]   Fractional-order Legendre-collocation method for solving fractional initial value problems [J].
Al-Mdallal, Qasem M. ;
Abu Omer, Ahmed S. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 :74-84
[2]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[3]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[4]   A high order schema for the numerical solution of the fractional ordinary differential equations [J].
Cao, Junying ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 238 :154-168
[5]   IMPLICIT-EXPLICIT DIFFERENCE SCHEMES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONSMOOTH SOLUTIONS [J].
Cao, Wanrong ;
Zeng, Fanhai ;
Zhang, Zhongqiang ;
Karniadakis, George Em .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :A3070-A3093
[6]   Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport [J].
Dentz, M ;
Cortis, A ;
Scher, H ;
Berkowitz, B .
ADVANCES IN WATER RESOURCES, 2004, 27 (02) :155-173
[7]   Detailed error analysis for a fractional Adams method [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NUMERICAL ALGORITHMS, 2004, 36 (01) :31-52
[8]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[9]   WEAKLY SINGULAR DISCRETE GRONWALL-INEQUALITIES [J].
DIXON, J ;
MCKEE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (11) :535-544
[10]   Current and universal scaling in anomalous transport [J].
Goychuk, I ;
Heinsalu, E ;
Patriarca, M ;
Schmid, G ;
Hänggi, P .
PHYSICAL REVIEW E, 2006, 73 (02)