Experimental and numerical research on the thermal performance of a vertical earth-to-air heat exchanger system

被引:1
|
作者
Huang, Kailiang [1 ]
Sun, Qihai [1 ]
Feng, Guohui [1 ]
Zhang, Lei [1 ]
Li, Ainong [1 ]
Wei, Jiaxing [1 ]
Zhang, Xiao [2 ]
Meng, Xianghua [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Municipal & Environm Engn, Shenyang 100168, Peoples R China
[2] Shenyang Thermal Engn Design & Res Inst Co Ltd, Shenyang 110011, Peoples R China
关键词
Vertical buried pipe; Earth-to-air heat exchanger; Thermal performance analysis; Experimental tests; CFD numerical simulation; ENERGY-CONSUMPTION; EAHE SYSTEMS; MODEL;
D O I
10.1016/j.geothermics.2024.103182
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Earth-to-Air Heat Exchanger (EAHE) system is an efficient and clean geothermal application technology that can be used for pre-cooling in summer and heating in winter. This paper proposes a novel Vertical Earth-to-Air Heat Exchanger (VEAHE) system that uses baffles to divide the vertical duct into two ventilation tunnels with a hollow area at the bottom for air circulation. This system occupies a small land area and has a relatively high geothermal energy utilization efficiency. This study evaluates the thermal performance of the system through experimental tests under various operating conditions. Additionally, a numerical model of the system was established to explore the influence of baffles length, thickness, and duct depth on its thermal performance. The experimental results show that the 2.5-meter deep VEAHE system achieves an average air pre-cooling temperature reduction of 5.42 degrees C, with a maximum temperature reduction of up to 7.58 degrees C. Below the 1.2-meter mark of the system, the cooling capacity of the descending pipe is 1.52 times that of the ascending pipe. The simulation showed a Maximum Absolute Relative Error (MARE) of 3.15 % compared to the experimental results. As the length and thickness of the baffles, duct length, and soil thermal conductivity increase, the average outlet air temperature gradually decreases, while the system's heat exchange capacity significantly improves, in contrast to the duct diameter. Among the influencing factors, the duct length has the greatest impact on the system. Under the recommended configuration, the system's maximum pre-cooling potential is 915.90 W, with the outlet air temperature ranging from 12.05 degrees C to 14.79 degrees C.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Thermal performance evaluation of an earth-to-air heat exchanger for the heating mode applications using an experimental test rig
    Ahmad, Saif Nawaz
    Prakash, Om
    ARCHIVES OF THERMODYNAMICS, 2022, 43 (01) : 185 - 207
  • [22] Evaluating the Thermal Performance and Environmental Impact of Agricultural Greenhouses Using Earth-to-Air Heat Exchanger: An Experimental Study
    Hamdane, Samia
    Pires, Luis Carlos Carvalho
    Silva, Pedro Dinho
    Gaspar, Pedro Dinis
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [23] Earth-to-Air Heat Exchanger for Cooling Applications in a Hot and Dry Climate: Numerical and Experimental Study
    Albarghooth, A.
    Ramiar, A.
    Ramyar, R.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2023, 36 (01): : 78 - 89
  • [24] Numerical study of earth-to-air heat exchanger for three different climates
    Ramirez-Davila, L.
    Xaman, J.
    Arce, J.
    Alvarez, G.
    Hernandez-Perez, I.
    ENERGY AND BUILDINGS, 2014, 76 : 238 - 248
  • [25] Enhancing a vertical earth-to-air heat exchanger system using tubular phase change material
    Liu, Zhengxuan
    Sun, Pengcheng
    Li, Shuisheng
    Yu, Zhun
    El Mankibi, Mohamed
    Roccamena, Letizia
    Yang, Tingting
    Zhang, Guoqiang
    JOURNAL OF CLEANER PRODUCTION, 2019, 237
  • [26] Analysis of an earth-to-air heat exchanger for enhanced residential thermal comfort
    Dewangan, Chandraprakash
    Shukla, Anuj Kumar
    Salhotra, Rahul
    Dewan, Anupam
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2024, 43 (03)
  • [27] Experimental evaluation of an earth-to-air heat exchanger and air source heat pump hybrid indoor air conditioning system
    Guo, Xin
    Wei, Haibin
    He, Xiao
    Du, Jinhui
    Yang, Dong
    ENERGY AND BUILDINGS, 2022, 256
  • [28] Experimental and Co-Simulation Performance Evaluation of an Earth-to-Air Heat Exchanger System Integrated into a Smart Building
    Kharbouch, Abdelhak
    Berrabah, Soukayna
    Bakhouya, Mohamed
    Gaber, Jaafar
    El Ouadghiri, Driss
    Kaitouni, Samir Idrissi
    ENERGIES, 2022, 15 (15)
  • [29] Thermal analysis of earth-to-air heat exchanger using laboratory simulator
    Yusof, T. M.
    Ibrahim, H.
    Azmi, W. H.
    Rejab, M. R. M.
    APPLIED THERMAL ENGINEERING, 2018, 134 : 130 - 140
  • [30] Modelling and performance analysis of an earth-to-air heat exchanger in a pilot installation
    Rosa, N.
    Santos, P.
    Costa, J. J.
    Gervasio, H.
    JOURNAL OF BUILDING PHYSICS, 2018, 42 (03) : 259 - 287