Dynamics of Hindmarsh-Rose diffusive system

被引:0
|
作者
Pan, Cuiyu [1 ]
Liu, Aimin [2 ]
Liu, Yongjian [2 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Guilin 541000, Peoples R China
[2] Yulin Normal Univ, Ctr Appl Math Guangxi, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hindmarsh-Rose diffusive system; Geometric singular perturbation theory; Periodic traveling wave; Canard explosion phenomenon; Relaxation oscillation; SINGULAR PERTURBATION-THEORY; CHAOTIC SYNCHRONIZATION; MODEL; POINTS; DELAY;
D O I
10.1007/s11071-024-10285-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss complex dynamic behaviors of Hindmarsh-Rose diffusive system (HRDS). Using traveling wave transformation, we firstly transform HRDS to slow-fast system with two small parameters. Applying geometric singular perturbation theory, we prove the existence of canard explosion phenomenon and relaxation oscillation in the slow-fast system. Thus, we get the existence of periodic traveling wave of HRDS. Furthermore, base on above theoretical result, we explain various firing activities of neurons.
引用
收藏
页码:1623 / 1635
页数:13
相关论文
共 50 条
  • [41] Transition to extreme events in a coupled memristive Hindmarsh-Rose neuron system
    Vijay, S. Dinesh
    Thamilmaran, K.
    Ahamed, A. Ishaq
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (03):
  • [42] DELAY-INDUCED DYNAMICAL TRANSITIONS IN SINGLE HINDMARSH-ROSE SYSTEM
    Zheng, Y. G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09):
  • [43] Control of chaotic solutions of the Hindmarsh-Rose equations
    Sabbagh, H
    CHAOS SOLITONS & FRACTALS, 2000, 11 (08) : 1213 - 1218
  • [44] Synchronization of Electrical Coupling Hindmarsh-Rose Neurons
    Liu, Yan
    He, Yiming
    Zhang, He
    Yu, Xiaoming
    Zhou, Jianwu
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2024, 13 (04) : 667 - 682
  • [45] Effects of external stimuli on the dynamics of deterministic and stochastic Hindmarsh-Rose neuron models
    Manchein, Cesar
    Rech, Paulo C.
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (08):
  • [46] Mutual Stabilization in Chaotic Hindmarsh-Rose Neurons
    Parker, John E.
    Short, Kevin M.
    DYNAMICS, 2023, 3 (02): : 282 - 298
  • [47] On the chaotic pole of attraction for Hindmarsh-Rose neuron dynamics with external current input
    Goufo, Emile Franck Doungmo
    Tabi, Conrad Bertrand
    CHAOS, 2019, 29 (02)
  • [48] Memristor synaptic dynamics' influence on synchronous behavior of two Hindmarsh-Rose neurons
    Corinto, Fernando
    Ascoli, Alon
    Lanza, Valentina
    Gilli, Marco
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2403 - 2408
  • [49] Estimate physical reliability in Hindmarsh-Rose neuron
    Xie, Ying
    Yao, Zhao
    Ren, Guodong
    Ma, Jun
    PHYSICS LETTERS A, 2023, 464
  • [50] Hamiltonian energy in a modified Hindmarsh-Rose model
    Zheng, Qianqian
    Xu, Yong
    Shen, Jianwei
    FRONTIERS IN NETWORK PHYSIOLOGY, 2024, 4