Dynamics of Hindmarsh-Rose diffusive system

被引:0
|
作者
Pan, Cuiyu [1 ]
Liu, Aimin [2 ]
Liu, Yongjian [2 ]
机构
[1] Guangxi Normal Univ, Sch Math & Stat, Guilin 541000, Peoples R China
[2] Yulin Normal Univ, Ctr Appl Math Guangxi, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
基金
中国国家自然科学基金;
关键词
Hindmarsh-Rose diffusive system; Geometric singular perturbation theory; Periodic traveling wave; Canard explosion phenomenon; Relaxation oscillation; SINGULAR PERTURBATION-THEORY; CHAOTIC SYNCHRONIZATION; MODEL; POINTS; DELAY;
D O I
10.1007/s11071-024-10285-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss complex dynamic behaviors of Hindmarsh-Rose diffusive system (HRDS). Using traveling wave transformation, we firstly transform HRDS to slow-fast system with two small parameters. Applying geometric singular perturbation theory, we prove the existence of canard explosion phenomenon and relaxation oscillation in the slow-fast system. Thus, we get the existence of periodic traveling wave of HRDS. Furthermore, base on above theoretical result, we explain various firing activities of neurons.
引用
收藏
页码:1623 / 1635
页数:13
相关论文
共 50 条
  • [21] Hindmarsh-Rose neuron model with memristors
    Usha, K.
    Subha, P. A.
    BIOSYSTEMS, 2019, 178 : 1 - 9
  • [22] Multistability in networks of Hindmarsh-Rose neurons
    Erichsen, R., Jr.
    Brunnet, L. G.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [23] State-to-State Transitions in a Hindmarsh-Rose Neuron System
    Huang Shou-Fang
    Zhang Ji-Qian
    Ding Shi-Jiang
    CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [24] Stochastic Dynamics and Chaos in the 3D Hindmarsh-Rose Model
    Ryashko, Lev
    Bashkirtseva, Irina
    Slepukhina, Evdokia
    Fedotov, Sergei
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2016 (ICCMSE-2016), 2016, 1790
  • [25] Hidden dynamics in a fractional-order memristive Hindmarsh-Rose model
    Yu, Yajuan
    Shi, Min
    Kang, Huiyan
    Chen, Mo
    Bao, Bocheng
    NONLINEAR DYNAMICS, 2020, 100 (01) : 891 - 906
  • [26] On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron
    Innocenti, G.
    Genesio, R.
    CHAOS, 2009, 19 (02)
  • [27] Making the Hindmarsh-Rose model adaptable in the slow interburst hyperpolarization dynamics
    Varona, Pablo
    Sanchez-Romero, Alvaro
    Torres, Joaquin J.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S129 - S129
  • [28] Dynamics of Hindmarsh-Rose neurons connected via adaptive memristive synapse
    Hajian, Dorsa Nezhad
    Ramadoss, Janarthanan
    Natiq, Hayder
    Parastesh, Fatemeh
    Rajagopal, Karthikeyan
    Jafari, Sajad
    CHINESE JOURNAL OF PHYSICS, 2024, 87 : 311 - 329
  • [29] Making the Hindmarsh-Rose model adaptable in the slow interburst hyperpolarization dynamics
    Varona, Pablo
    Sanchez-Romero, Alvaro
    Torres, Joaquin J.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2024, 52 : S129 - S129
  • [30] On the Darboux Integrability of the Hindmarsh-Rose Burster
    Llibre, Jaume
    Valls, Claudia
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (06) : 947 - 958