Data-driven and privacy-preserving risk assessment method based on federated learning for smart grids

被引:1
|
作者
Song Deng [1 ]
Longxiang Zhang [2 ]
Dong Yue [1 ]
机构
[1] Nanjing University of Posts and Telecommunications,Institute of Advanced Technology
[2] Nanjing University of Posts and Telecommunications,College of Automation
来源
Communications Engineering | / 3卷 / 1期
关键词
D O I
10.1038/s44172-024-00300-6
中图分类号
学科分类号
摘要
Timely and precise security risk evaluation is essential for optimal operational planning, threat detection, and the reliable operation of smart grid. The smart grid can integrate extensive high-dimensional operational data. However, conventional risk assessment techniques often struggle with managing such data volumes. Moreover, many methods use centralized evaluation, potentially neglecting privacy issues. Additionally, Power grid operators are often reluctant to share sensitive risk-related data due to privacy concerns. Here we introduce a data-driven and privacy-preserving risk assessment method that safeguards Power grid operators’ data privacy by integrating deep learning and secure encryption in a federated learning framework. The method involves: (1) developing a two-tier risk indicator system and an expanded dataset; (2) using a deep convolutional neural network -based model to analyze the relationship between system variables and risk levels; and (3) creating a secure, federated risk assessment protocol with homomorphic encryption to protect model parameters during training. Experiments on IEEE 14-bus and IEEE 118-bus systems show that our approach ensures high assessment accuracy and data privacy.
引用
收藏
相关论文
共 50 条
  • [31] Federated Learning-Based Privacy-Preserving Data Aggregation Scheme for IIoT
    Fan, Hongbin
    Huang, Changbing
    Liu, Yining
    IEEE ACCESS, 2023, 11 : 6700 - 6707
  • [32] A Privacy-preserving Data Alignment Framework for Vertical Federated Learning
    Gao, Ying
    Xie, Yuxin
    Deng, Huanghao
    Zhu, Zukun
    Zhang, Yiyu
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3419 - 3427
  • [33] Privacy-preserving federated learning based on partial low-quality data
    Huiyong Wang
    Qi Wang
    Yong Ding
    Shijie Tang
    Yujue Wang
    Journal of Cloud Computing, 13
  • [34] Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
    Xu, Yukai
    Zhang, Jingfeng
    Gu, Yujie
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1142 - 1147
  • [35] A Federated Learning Based Privacy-Preserving Data Sharing Scheme for Internet of Vehicles
    Wang, Yangpeng
    Xiong, Ling
    Niu, Xianhua
    Wang, Yunxiang
    Liang, Dexin
    FRONTIERS IN CYBER SECURITY, FCS 2022, 2022, 1726 : 18 - 33
  • [36] Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data
    Zhao, Bin
    Fan, Kai
    Yang, Kan
    Wang, Zilong
    Li, Hui
    Yang, Yintang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6314 - 6323
  • [37] Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning
    Zhang, Lan
    Li, Anran
    Peng, Hongyi
    Han, Feng
    Huang, Fan
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (11) : 2054 - 2068
  • [38] A Privacy-Preserving Method for Sequential Recommendation in Vertical Federated Learning
    Shi, Yutian
    Wang, Beilun
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2221 - 2226
  • [39] Privacy-Preserving Outsourcing Algorithms for Multidimensional Data Encryption in Smart Grids
    Zhai, Feng
    Yang, Ting
    Zhao, Bing
    Chen, Hao
    SENSORS, 2022, 22 (12)
  • [40] FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation
    Pan, Liangrui
    Huang, Mao
    Wang, Lian
    Qin, Pinle
    Peng, Shaoliang
    Proceedings - 2024 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2024, 2024, : 2325 - 2331