Studying network of symmetric periodic orbit families of the Hill problem via symplectic invariants

被引:0
|
作者
Aydin, Cengiz [1 ]
Batkhin, Alexander [2 ]
机构
[1] Heidelberg Univ, Inst Math, Heidelberg, Germany
[2] Technion Israel Inst Technol, Haifa, Israel
关键词
Hill three-body problem; Periodic solution; Conley-Zehnder index; Symmetry; Bifurcation diagram; HAMILTONIAN-SYSTEMS; BIFURCATIONS; DYNAMICS;
D O I
10.1007/s10569-025-10241-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the framework of the spatial circular Hill three-body problem, we illustrate the application of symplectic invariants to analyze the network structure of symmetric periodic orbits families. The extensive collection of families within this problem constitutes a complex network, fundamentally comprising the so-called basic families of periodic solutions, including the orbits of the satellite g, f, the libration (Lyapunov) a, c, and collision B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}_0$$\end{document} families. Since the Conley-Zehnder index leads to a grading on the local Floer homology and its Euler characteristics, a bifurcation invariant, the computation of those indices facilitates the construction of well-organized bifurcation graphs depicting the interconnectedness among families of periodic solutions. The critical importance of the symmetries of periodic solutions in comprehending the interaction among these families is demonstrated.
引用
收藏
页数:77
相关论文
共 8 条
  • [1] Structure of Periodic Orbit Families in the Hill Restricted 4-Body Problem
    Brown, Gavin M.
    Peterson, Luke T.
    Henry, Damennick B.
    Scheeres, Daniel J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 346 - 375
  • [2] Statistics of the Distribution of Families of Periodic Solutions to Hill's Problem
    Batkhin, A. B.
    PROGRAMMING AND COMPUTER SOFTWARE, 2025, 51 (02) : 49 - 60
  • [3] Web of families of periodic orbits of the generalized hill problem
    Batkhin, A. B.
    DOKLADY MATHEMATICS, 2014, 90 (02) : 539 - 544
  • [4] Web of families of periodic orbits of the generalized hill problem
    A. B. Batkhin
    Doklady Mathematics, 2014, 90 : 539 - 544
  • [5] Symmetric periodic solutions of the Hill’s problem. I
    A. B. Batkhin
    Cosmic Research, 2013, 51 : 275 - 288
  • [6] Symmetric periodic solutions of the Hill’s problem. II
    A. B. Batkhin
    Cosmic Research, 2013, 51 : 452 - 464
  • [7] Families of periodic orbits in the planar Hill's four-body problem
    Burgos-Garcia, Jaime
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (11)
  • [8] Families of periodic orbits in Hill's problem with solar radiation pressure: application to Hayabusa 2
    Giancotti, Marco
    Campagnola, Stefano
    Tsuda, Yuichi
    Kawaguchi, Jun'ichiro
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2014, 120 (03) : 269 - 286