Robust fault detection and classification in power transmission lines via ensemble machine learning models

被引:0
|
作者
Anwar, Tahir [1 ]
Mu, Chaoxu [1 ]
Yousaf, Muhammad Zain [2 ,3 ]
Khan, Wajid [1 ]
Khalid, Saqib [4 ]
Hourani, Ahmad O. [5 ]
Zaitsev, Ievgen [6 ,7 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Zhejiang Univ, Ctr Renewable Energy & Microgrids, Huanjiang Lab, Zhuji 311816, Zhejiang, Peoples R China
[3] Hubei Univ Automot Technol, Sch Elect & Informat Engn, Shiyan 442002, Peoples R China
[4] Univ Lahore, Sch Elect Engn, Lahore, Pakistan
[5] AL Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman, Jordan
[6] Natl Acad Sci Ukraine, Inst Electrodynam, Dept Theoret Elect Engn & Diagnost Elect Equipment, Beresteyskiy 56,Kyiv 57, Kyiv 03680, Ukraine
[7] Natl Acad Sci Ukraine, Ctr Informat Analyt & Tech Support Nucl Power Faci, Akad Palladina Ave 34-A, Kyiv, Ukraine
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Transmission lines; Fault detection; Machine learning; Ensemble learning; Power stability; LOCATION METHOD; DIAGNOSIS;
D O I
10.1038/s41598-025-86554-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transmission lines are vital for delivering electricity over long distances, yet they face reliability challenges due to faults that can disrupt power supply and pose safety risks. This research introduces a novel approach for fault detection and classification by analyzing voltage and current patterns across transmission line phases. Leveraging a comprehensive dataset of diverse fault scenarios, various machine learning algorithms-including Random Forest (RF), K-Nearest Neighbors (KNN), and Long Short-Term Memory (LSTM) networks-are evaluated. An ensemble methodology, RF-LSTM Tuned KNN, is proposed to enhance detection accuracy and robustness. Results indicate that RF-LSTM Tuned KNN achieves a remarkable accuracy of 99.96% on a multi-label dataset, outperforming RF (97.50%) and KNN (96.55%). In binary classification, KNN attains the highest accuracy of 99.85%, closely followed by RF at 99.72%. This methodology provides significant advancements in fault detection capabilities, offering valuable insights for improving grid reliability and stability, and ensuring a more resilient power supply.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Robust Intrusion Detection System using Ensemble Machine Learning
    Divakar, Subham
    Priyadarshini, Rojalina
    Mishra, Brojo Kishore
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 348 - 351
  • [42] Fault Detection and Classification for Photovoltaic Systems Based on Hierarchical Classification and Machine Learning Technique
    Eskandari, Aref
    Milimonfared, Jafar
    Aghaei, Mohammadreza
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12750 - 12759
  • [43] Harnessing the Power of Ensemble Machine Learning for the Heart Stroke Classification
    Pal P.
    Nandal M.
    Dikshit S.
    Thusu A.
    Singh H.V.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [44] Fault Classification in Power Transformers via Dissolved Gas Analysis and Machine Learning Algorithms: A Systematic Literature Review
    Dladla, Vuyani M. N.
    Thango, Bonginkosi A.
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [45] An Ensemble Based Machine Learning Classification for Automated Glaucoma Detection
    Pawar, Digvijay J.
    Kanse, Yuvraj K.
    Patil, Suhas S.
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2024, 13
  • [46] A Method of Fault Location Detection on Branched Power Transmission Lines
    Shagiev R.I.
    Karpov A.V.
    Kalabanov S.A.
    Russian Electrical Engineering, 2019, 90 (02): : 135 - 139
  • [47] Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems
    Mellit, Adel
    Kalogirou, Soteris
    RENEWABLE ENERGY, 2022, 184 : 1074 - 1090
  • [48] Bearing fault detection by using graph autoencoder and ensemble learning
    Wang, Meng
    Yu, Jiong
    Leng, Hongyong
    Du, Xusheng
    Liu, Yiran
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [49] Crack fault diagnosis of rotating machine in nuclear power plant based on ensemble learning
    Zhong, Xianping
    Ban, Heng
    ANNALS OF NUCLEAR ENERGY, 2022, 168
  • [50] Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
    Patil, S.
    Phalle, V
    INTERNATIONAL JOURNAL OF ENGINEERING, 2018, 31 (11): : 1972 - 1981