Dynamic ultrasound-based modeling predictive of response to neoadjuvant chemotherapy in patients with early breast cancer

被引:1
作者
Wang, Xinyi [1 ]
Zhang, Yuting [1 ]
Yang, Mengting [2 ]
Wu, Nan [1 ]
Wang, Shan [1 ]
Chen, Hong [1 ]
Zhou, Tianyang [1 ]
Zhang, Ying [1 ]
Wang, Xiaolan [3 ]
Jin, Zining [4 ]
Zheng, Ang [4 ]
Yao, Fan [4 ]
Zhang, Dianlong [3 ]
Jin, Feng [4 ]
Qin, Pan [2 ]
Wang, Jia [1 ]
机构
[1] Dalian Med Univ, Dept Breast Surg, Affiliated Hosp 2, 467 Zhongshan Rd, Dalian, Peoples R China
[2] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
[3] Dalian Univ, Dept Breast & Thyroid Surg, Affiliated Zhongshan Hosp, Dalian, Peoples R China
[4] China Med Univ, Dept Breast Surg, Hosp 1, Shenyang, Peoples R China
关键词
Breast cancer; Neoadjuvant chemotherapy; Early response prediction; Ultrasound; Nomogram; Support vector machine; PATHOLOGICAL COMPLETE REMISSION; CLINICAL-TRIALS; TRASTUZUMAB; RADIOMICS; SURVIVAL; EFFICACY; THERAPY; DNA;
D O I
10.1038/s41598-024-80409-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model. This retrospective study included 304 EBC patients recruited from multiple centers. All enrollees had completed NACT regimens, and underwent US examinations at baseline and at each NACT cycle. We subsequently determined that percentage reduction of tumor maximum diameter from baseline to third cycle of NACT serves to independent predictor for pCR, enabling creation of a nomogram (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AUC}=0.75$$\end{document}). Our predictive accuracy further improved (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{AUC}=0.868$$\end{document}) by combining dynamic US data and clinicopathological features in a machine learning model. Such models may offer a means of accurately predicting NACT responses in this setting, helping to individualize patient therapy. Our study may provide additional insights into the US-based response prediction by focusing on the dynamic changes of the tumor in the early and full NACT cycle.
引用
收藏
页数:14
相关论文
共 58 条
[1]   Early ultrasound evaluation identifies excellent responders to neoadjuvant systemic therapy among patients with triple-negative breast cancer [J].
Adrada, Beatriz E. ;
Candelaria, Rosalind ;
Moulder, Stacy ;
Thompson, Alastair ;
Wei, Peng ;
Whitman, Gary J. ;
Valero, Vicente ;
Litton, Jennifer K. ;
Santiago, Lumarie ;
Scoggins, Marion E. ;
Moseley, Tanya W. ;
White, Jason B. ;
Ravenberg, Elizabeth E. ;
Yang, Wei T. ;
Rauch, Gaiane M. .
CANCER, 2021, 127 (16) :2880-2887
[2]   Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials [J].
Alberro, J. A. ;
Ballester, B. ;
Deulofeu, P. ;
Fabregas, R. ;
Fraile, M. ;
Gubern, J. M. ;
Janer, J. ;
Moral, A. ;
de Pablo, J. L. ;
Penalva, G. ;
Puig, P. ;
Ramos, M. ;
Rojo, R. ;
Santesteban, P. ;
Serra, C. ;
Sola, M. ;
Solarnau, L. ;
Solsona, J. ;
Veloso, E. ;
Vidal, S. ;
Abe, O. ;
Abe, R. ;
Enomoto, K. ;
Kikuchi, K. ;
Koyama, H. ;
Masuda, H. ;
Nomura, Y. ;
Ohashi, Y. ;
Sakai, K. ;
Sugimachi, K. ;
Toi, M. ;
Tominaga, T. ;
Uchino, J. ;
Yoshida, M. ;
Coles, C. E. ;
Haybittle, J. L. ;
Moebus, V. ;
Leonard, C. F. ;
Calais, G. ;
Garaud, P. ;
Collett, V. ;
Davies, C. ;
Delmestri, A. ;
Sayer, J. ;
Harvey, V. J. ;
Holdaway, I. M. ;
Kay, R. G. ;
Mason, B. H. ;
Forbe, J. F. ;
Franci, P. A. .
LANCET ONCOLOGY, 2018, 19 (01) :27-39
[3]   Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI [J].
Balu-Maestro, C ;
Chapellier, C ;
Bleuse, A ;
Chanalet, I ;
Chauvel, C ;
Largillier, R .
BREAST CANCER RESEARCH AND TREATMENT, 2002, 72 (02) :145-152
[4]   MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer [J].
Bitencourt, Almir G., V ;
Gibbs, Peter ;
Saccarelli, Carolina Rossi ;
Daimiel, Isaac ;
Lo Gullo, Roberto ;
Fox, Michael J. ;
Thakur, Sunitha ;
Pinker, Katja ;
Morris, Elizabeth A. ;
Morrow, Monica ;
Jochelson, Maxine S. .
EBIOMEDICINE, 2020, 61
[5]   Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set [J].
Cain, Elizabeth Hope ;
Saha, Ashirbani ;
Harowicz, Michael R. ;
Marks, Jeffrey R. ;
Marcom, P. Kelly ;
Mazurowski, Maciej A. .
BREAST CANCER RESEARCH AND TREATMENT, 2019, 173 (02) :455-463
[6]   Multivariable Models Based on Baseline Imaging Features and Clinicopathological Characteristics to Predict Breast Pathologic Response after Neoadjuvant Chemotherapy in Patients with Breast Cancer [J].
Chen, Peixian ;
Wang, Chuan ;
Lu, Ruiliang ;
Pan, Ruilin ;
Zhu, Lewei ;
Zhou, Dan ;
Ye, Guolin .
BREAST CARE, 2022, 17 (03) :306-315
[7]   Rates of Neoadjuvant Chemotherapy and Oncoplastic Surgery for Breast Cancer Surgery: A French National Survey [J].
Clough, Krishna B. ;
Acosta-Marin, Victor ;
Nos, Claude ;
Alran, Severine ;
Rouanet, Philippe ;
Garbay, Jean-Remi ;
Giard, Sylvia ;
Verhaeghe, Jean-Luc ;
Houvenaeghel, Gilles ;
Flipo, Bernard ;
Dauplat, Jacques ;
Dorangeon, Pierre Herve ;
Classe, Jean-Marc ;
Rouzier, Roman ;
Bonnier, Pascal .
ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (11) :3504-3511
[8]   Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J].
Cortazar, Patricia ;
Zhang, Lijun ;
Untch, Michael ;
Mehta, Keyur ;
Costantino, Joseph P. ;
Wolmark, Norman ;
Bonnefoi, Herve ;
Cameron, David ;
Gianni, Luca ;
Valagussa, Pinuccia ;
Swain, Sandra M. ;
Prowell, Tatiana ;
Loibl, Sibylle ;
Wickerham, D. Lawrence ;
Bogaerts, Jan ;
Baselga, Jose ;
Perou, Charles ;
Blumenthal, Gideon ;
Blohmer, Jens ;
Mamounas, Eleftherios P. ;
Bergh, Jonas ;
Semiglazov, Vladimir ;
Justice, Robert ;
Eidtmann, Holger ;
Paik, Soonmyung ;
Piccart, Martine ;
Sridhara, Rajeshwari ;
Fasching, Peter A. ;
Slaets, Leen ;
Tang, Shenghui ;
Gerber, Bernd ;
Geyer, Charles E., Jr. ;
Pazdur, Richard ;
Ditsch, Nina ;
Rastogi, Priya ;
Eiermann, Wolfgang ;
von Minckwitz, Gunter .
LANCET, 2014, 384 (9938) :164-172
[9]   The use of breast imaging for predicting response to neoadjuvant lapatinib, trastuzumab and their combination in HER2-positive breast cancer: Results from Neo-ALTTO [J].
Di Cosimo, S. ;
Campbell, C. ;
Azim, H. A., Jr. ;
Galli, G. ;
Bregni, G. ;
Curigliano, G. ;
Criscitiello, C. ;
Izquierdo, M. ;
de la Pena, L. ;
Fumagalli, D. ;
Fein, L. ;
Vinholes, J. ;
Ng, W. M. J. ;
Colleoni, M. ;
Ferro, A. ;
Naume, B. J. ;
Patel, A. ;
Huober, J. ;
Piccart-Gebhart, M. J. ;
Baselga, J. ;
de Azambuja, E. .
EUROPEAN JOURNAL OF CANCER, 2018, 89 :42-48
[10]   Role of Imaging in Neoadjuvant Therapy for Breast Cancer [J].
Dialani, Vandana ;
Chadashvili, Tamuna ;
Slanetz, Priscilla J. .
ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (05) :1416-1424