Eigenvalues of the magnetic Dirichlet Laplacian with constant magnetic field on disks in the strong field limit

被引:1
作者
Baur, Matthias [1 ]
Weidl, Timo [1 ]
机构
[1] Univ Stuttgart, Dept Math, Inst Anal Dynam & Modelling, Pfaffenwaldring 57, D-70569 Stuttgart, BW, Germany
关键词
Eigenvalue; Laplacian; Magnetic field; Disk; Spectral bound;
D O I
10.1007/s13324-024-01008-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the magnetic Dirichlet Laplacian with constant magnetic field on domains of finite measure. First, in the case of a disk, we prove that the eigenvalue branches with respect to the field strength behave asymptotically linear with an exponentially small remainder term as the field strength goes to infinity. We compute the asymptotic expression for this remainder term. Second, we show that for sufficiently large magnetic field strengths, the spectral bound corresponding to the P & oacute;lya conjecture for the non-magnetic Dirichlet Laplacian is violated up to a sharp excess factor which is independent of the domain.
引用
收藏
页数:30
相关论文
共 26 条
[1]   SEMICLASSICAL BOUNDS FOR EIGENVALUES OF SCHRODINGER OPERATORS [J].
AIZENMAN, M ;
LIEB, EH .
PHYSICS LETTERS A, 1978, 66 (06) :427-429
[2]  
[Anonymous], 1972, Handbook ofMathematicalFunctions with Formulas, Graphs, andMathematical Tables, 9th printing
[3]   On the semiclassical spectrum of the Dirichlet-Pauli operator [J].
Barbaroux, J-M ;
Le Treust, L. ;
Raymond, N. ;
Stockmeyer, E. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (10) :3279-3321
[4]  
Bateman H., 1953, Higher Transcendental Functions
[5]  
Berezin F. A., 1972, Mathematics of the USSR-Izvestiya, V6, P1117, DOI [10.1070/im1972v006n05abeh001913, DOI 10.1070/IM1972V006N05ABEH001913]
[6]  
Buchholz H., 1953, Ergebnisse der angewandten Mathematik, V2
[7]   Estimates for the lowest eigenvalue of magnetic Laplacians [J].
Ekholm, Tomas ;
Kovarik, Hynek ;
Portmann, Fabian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (01) :330-346
[8]   Diamagnetic behavior of sums Dirichlet eigenvalues [J].
Erdös, L ;
Loss, M ;
Vougalter, V .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :891-+
[9]  
Filonov N, 2024, Arxiv, DOI [arXiv:2311.14072, 10.48550/ARXIV.2311.14072, DOI 10.48550/ARXIV.2311.14072]
[10]   Polya's conjecture for Euclidean balls [J].
Filonov, Nikolay ;
Levitin, Michael ;
Polterovich, Iosif ;
Sher, David A. .
INVENTIONES MATHEMATICAE, 2023, 234 (01) :129-169