Utilisation of By-Product Phosphogypsum Through Extrusion-Based 3D Printing

被引:1
|
作者
Sinka, Maris [1 ]
Vaiciukyniene, Danute [2 ]
Nizeviciene, Dalia [3 ]
Sapata, Alise [1 ]
Fornes, Ignacio Villalon [2 ]
Vaitkevicius, Vitoldas [2 ]
Serelis, Evaldas [2 ]
机构
[1] Riga Tech Univ, Inst Mat & Struct, Fac Civil Engn, Kipsalas St 6A, LV-1658 Riga, Latvia
[2] Kaunas Univ Technol, Fac Civil Engn & Architecture, Bldg Mat & Struct Res Ctr, Studentu St 48, LT-51367 Kaunas, Lithuania
[3] Kaunas Univ Technol, Fac Elect & Elect Engn, Dept Elect Power Syst, Studentu St 48, LT-51367 Kaunas, Lithuania
关键词
phosphogypsum; 3D printing; building materials; recycling materials;
D O I
10.3390/ma17225570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phosphogypsum (PG) is a phosphate fertiliser by-product. This by-product has a low level of utilisation. Calcium sulphate is dominated in PG similar to gypsum and, therefore, has good binding properties (similar to natural gypsum). However, the presence of water-soluble phosphates and fluorides, an unwanted acidic impurity in PG, makes PG unsuitable for the manufacture of gypsum-based products. In this study, the binding material of PG (beta-CaSO4<middle dot>0.5H2O) was produced from beta-CaSO4<middle dot>2H2O by calcination. To neutralise the acidic PG impurities, 0.5 wt% quicklime was added to the PG. In the construction sector, 3D-printing technology is developing rapidly as this technology has many advantages. The current study is focused on creating a 3D-printable PG mixture. The 3D-printing paste was made using sand as the fine aggregate and a binder based on PG. The results obtained show that, despite the low degree of densification, 3D printing improves the mechanical properties of this material compared to cast samples. The 3D-printed specimens tested in [u] direction reached the highest compressive strength of 950 kPa. The cast specimens showed a 17% lower compressive strength of 810 kPa. The 3D-printed specimens tested in the [v] and [w] directions reached a compressive strength of 550 kPa and 710 kPa, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [2] Extrusion-based 3D printing of soft active materials
    Zhao, Jiayu
    Li, Xiao
    Ji, Donghwan
    Bae, Jinhye
    CHEMICAL COMMUNICATIONS, 2024, 60 (58) : 7414 - 7426
  • [3] EXTRUSION-BASED 3D PRINTING OF PORCELAIN: FEASIBLE REGIONS
    Bhardwaj, Abhinav
    Kalantar, Negar
    Molina, Elmer
    Zou, Na
    Pei, Zhijian
    PROCEEDINGS OF THE ASME 14TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2019, VOL 1, 2019,
  • [4] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    GELS, 2024, 10 (02)
  • [5] Extrusion-based 3D food printing - Materials and machines
    Tan, Cavin
    Toh, Wei Yan
    Wong, Gladys
    Li, Lin
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2018, 4 (02)
  • [6] Hyaluronic acid as a bioink for extrusion-based 3D printing
    Petta, D.
    D'Amora, U.
    Ambrosio, L.
    Grijpma, D. W.
    Eglin, D.
    D'Este, M.
    BIOFABRICATION, 2020, 12 (03)
  • [7] A comprehensive review on integrating vision-based sensing in extrusion-based 3D printing processes: toward geometric monitoring of extrusion-based 3D concrete printing
    Paniz Farrokhsiar
    Benay Gursoy
    Jose Pinto Duarte
    Construction Robotics, 2024, 8 (2)
  • [8] Extrusion-based 3D printing of gelatin methacryloyl with nanocrystalline hydroxyapatite
    Das, Soumitra
    Basu, Bikramjit
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2022, 19 (02) : 924 - 938
  • [9] Extrusion-Based 3D Printing Applications of PLA Composites: A Review
    Tumer, Eda Hazal
    Erbil, Husnu Yildirim
    COATINGS, 2021, 11 (04)
  • [10] Structural failure during extrusion-based 3D printing processes
    R. J. M. Wolfs
    A. S. J. Suiker
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 565 - 584