RHALY OPERATORS ACTING ON ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document}-SPACES

被引:0
|
作者
Petros Galanopoulos [1 ]
Daniel Girela [2 ]
Gabriel T. Prǎjiturǎ [3 ]
机构
[1] Aristotle University of Thessaloniki,Department of Mathematics
[2] Universidad de Málaga,Análisis Matemático
[3] Campus de Teatinos,Department of Mathematics
[4] SUNY Brockport,undefined
关键词
Rhaly operators; Cesàro operator; spaces; Bounded operator; Compact operator; 47B38; 47B91; 30H10;
D O I
10.1007/s10958-024-07283-x
中图分类号
学科分类号
摘要
Let S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S$$\end{document} be the space of all complex sequences. If {βn}n=0∞∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ \beta _n\}_{n=0}^\infty \in \mathcal S$$\end{document}, the Rhaly operator R{βn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\{ \beta _n\} }$$\end{document} is defined in S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}$$\end{document} as follows: If {an}n=0∞∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ a_n\}_{n=0}^\infty \in \mathcal S$$\end{document}, then R{βn}({an}n=0∞)=βn∑k=0nakn=0∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{ \{\beta _n\} }(\{ a_n\}_{n=0}^\infty )\,=\,\left\{ \beta _n\sum _{k=0}^na_k\right\} _{n=0}^\infty .$$\end{document}Rhaly operators are a natural generalization of the Cesàro operator. We characterize the sequences {βn}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ \beta _n\}_{n=0}^\infty$$\end{document} for which the operator R{βn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\{ \beta _n\} }$$\end{document} is either bounded or compact on the space ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document} for any p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, \infty )$$\end{document}.
引用
收藏
页码:1115 / 1122
页数:7
相关论文
共 50 条