A Generalized Equation of Motion for Dynamic Analysis of a Uniform Beam Subjected to Multiple Moving Loads

被引:0
作者
Wu, Chia-Chin [1 ]
Hsieh, Tsung-Han [1 ]
Chang, Ting-Yu [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Mold & Die Engn, Kaohsiung, Taiwan
关键词
Generalized equation of motion; Generalized property matrices; Rayleigh damping theory; Inertial force of moving load; Mode-superposition method (MSM); VIBRATION ANALYSIS; BOUNDARY-CONDITIONS; MASS;
D O I
10.1007/s42417-024-01650-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
PurposeThis paper presented a generalized equation of motions, where the effects of damping forces of the entire vibrating system and inertial force of each moving load were considered, and the forced vibration problem regarding the uniform beams subjected to multiple moving loads can be easily solved.MethodsTo the above end, each mode of vibration was considered as one degree of freedom (DOF) of the entire vibrating system. Then, the mode-superposition method (MSM) and Rayleigh damping theory were incorporated, and the equation of motion: mn ' xn 'eta<spacing diaeresis>n ' x1+cn ' xn 'eta(center dot)n ' x1+kn ' xn 'eta n ' x1=fn ' x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left[m\right]}_{{n}<^>{\prime}\times {n}<^>{\prime}}{\left\{\ddot{\eta }\right\}}_{{n}<^>{\prime}\times 1}+{\left[c\right]}_{{n}<^>{\prime}\times {n}<^>{\prime}}{\left\{\dot{\eta }\right\}}_{{n}<^>{\prime}\times 1}+{\left[k\right]}_{{n}<^>{\prime}\times {n}<^>{\prime}}{\left\{\eta \right\}}_{{n}<^>{\prime}\times 1}={\left\{f\right\}}_{{n}<^>{\prime}\times 1}$$\end{document}, was obtained. Finally, solving the matrix equation for {eta}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ \eta \}$$\end{document} by using the Newmark's direct integration method, one may obtain the vertical deflections of the beam at any position x and time t.ResultsThe numerical examples revealed that the presented method is easy to tackle the dynamic problem regarding the uniform beams under any number of moving loads with effects of damping forces and inertial forces considered (or neglected), and the obtained results are in good agreement with those obtained from the FEM.ConclusionAlthough the forgoing "generalized" equation of motions for the "analytical" method is similar to the "conventional" one for the "numerical" FEM, the CPU time required by the former was much less than that required by the latter, because the total mode numbers n '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}<^>{\prime}$$\end{document} (in general n '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}<^>{\prime}$$\end{document} <= 15) considered by the presented method is much smaller than the total DOFs (in general n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n}$$\end{document} >= 80) considered by the FEM.
引用
收藏
页数:25
相关论文
共 37 条
[1]   Vibration analysis of beams with general boundary conditions traversed by a moving force [J].
Abu Hilal, M ;
Zibdeh, HS .
JOURNAL OF SOUND AND VIBRATION, 2000, 229 (02) :377-388
[2]   Vibration of beams with general boundary conditions due to a moving harmonic load [J].
Abu-Hilal, M ;
Mohsen, M .
JOURNAL OF SOUND AND VIBRATION, 2000, 232 (04) :703-717
[3]  
[Anonymous], 1968, THEORY MATRIX STRUCT
[4]  
Bathe KJ, 2014, Finite Element Procedures
[5]  
Carnahan B., 1969, APPL NUMERICAL METHO
[6]  
Dwight H. B., 1957, Tables of Integrals and Other Mathematical Data
[7]   Dynamic Behavior Analysis of a Rotating Shaft with an Elliptical Breathing Surface Crack [J].
Elkashlawy, Ahmed A. ;
Younes, Younes K. ;
El-Mongy, Heba H. .
JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (08) :4371-4385
[8]   VIBRATION ANALYSIS OF BEAMS TRAVERSED BY UNIFORM PARTIALLY DISTRIBUTED MOVING MASSES [J].
ESMAILZADEH, E ;
GHORASHI, M .
JOURNAL OF SOUND AND VIBRATION, 1995, 184 (01) :9-17
[9]   A dynamic Green function formulation for the response of a beam structure to a moving mass [J].
Foda, MA ;
Abduljabbar, Z .
JOURNAL OF SOUND AND VIBRATION, 1998, 210 (03) :295-306
[10]  
Frba L., 1972, VIBRATION SOLIDS STR, DOI [10.1007/978-94-011-9685-7, DOI 10.1007/978-94-011-9685-7]