Accurate and efficient assessment of highland barley (Hordeum vulgare L.) density is crucial for optimizing cultivation and management practices. However, challenges such as overlapping spikes in unmanned aerial vehicle (UAV) images and the computational requirements for high-resolution image analysis hinder real-time detection capabilities. To address these issues, this study proposes an improved lightweight YOLOv5 model for highland barley spike detection. We chose depthwise separable convolution (DSConv) and ghost convolution (GhostConv) for the backbone and neck networks, respectively, to reduce the parameter and computational complexity. In addition, the integration of convolutional block attention module (CBAM) enhances the model's ability to focus on target object in complex backgrounds. The results show that the improved YOLOv5 model has a significant improvement in detection performance. Precision and recall increased by 3.1% to 92.2% and 86.2%, respectively, with an F1 score of 0.892. The AP0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {AP}_{0.5}$$\end{document} reaches 92.7% and 93.5% for highland barley in the growth and maturation stages, respectively, and the overall mAP0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mAP}_{0.5}$$\end{document} improved to 93.1%. Compared to the baseline YOLOv5n model, the number of parameters and floating-point operations (FLOPs) were reduced by 70.6% and 75.6%, respectively, enabling lightweight deployment without compromising accuracy. In addition,the proposed model outperformed mainstream object detection algorithms such as Faster R-CNN, Mask R-CNN, RetinaNet, YOLOv7, and YOLOv8, in terms of detection accuracy and computational efficiency. Although this study also suffers from limitations such as insufficient generalization under varying lighting conditions and reliance on rectangular annotations, it provides valuable support and reference for the development of real-time highland barley spike detection systems, which can help to improve agricultural management.