Real-time label-free imaging of living crystallization-driven self-assembly

被引:0
|
作者
Guo, Yujie [1 ]
Xia, Tianlai [2 ]
Walter, Vivien [3 ]
Xie, Yujie [2 ]
Rho, Julia Y. [2 ]
Xiao, Laihui [2 ]
O'Reilly, Rachel K. [2 ]
Wallace, Mark I. [1 ]
机构
[1] Kings Coll London, Dept Chem, London, England
[2] Univ Birmingham, Sch Chem Engn, Birmingham, England
[3] Kings Coll London, Dept Engn, London, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
INTERFEROMETRIC SCATTERING MICROSCOPY; HIERARCHICAL MICELLE ARCHITECTURES; MONODISPERSE CYLINDRICAL MICELLES; POLYMER PLATELETS; CONTROLLED LENGTH; GROWTH; FABRICATION; NANOFIBERS; MORPHOLOGY; CRYSTALS;
D O I
10.1038/s41467-025-57776-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Living crystallization-driven self-assembly (CDSA) of semicrystalline block copolymers is a powerful method for the bottom-up construction of uniform polymer microstructures with complex hierarchies. Improving our ability to engineer such complex particles demands a better understanding of how to precisely control the self-assembly process. Here, we apply interferometric scattering (iSCAT) microscopy to observe the real-time growth of individual poly(epsilon-caprolactone)-based fibers and platelets. This label-free method enables us to map the role of key reaction parameters on platelet growth rate, size, and morphology. Furthermore, iSCAT provides a contrast mechanism for studying multi-annulus platelets formed via the sequential addition of different unimers, offering insights into the spatial distribution of polymer compositions within a single platelet.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Emerging applications for living crystallization-driven self-assembly
    MacFarlane, Liam
    Zhao, Chuanqi
    Cai, Jiandong
    Qiu, Huibin
    Manners, Ian
    CHEMICAL SCIENCE, 2021, 12 (13) : 4661 - 4682
  • [2] Monodisperse cylindrical micelles by crystallization-driven living self-assembly
    Gilroy J.B.
    Gädt T.
    Whittell G.R.
    Chabanne L.
    Mitchels J.M.
    Richardson R.M.
    Winnik M.A.
    Manners I.
    Nature Chemistry, 2010, 2 (7) : 566 - 570
  • [3] Monodisperse cylindrical micelles by crystallization-driven living self-assembly
    Gilroy, Joe B.
    Gaedt, Torben
    Whittell, George R.
    Chabanne, Laurent
    Mitchels, John M.
    Richardson, Robert M.
    Winnik, Mitchell A.
    Manners, Ian
    NATURE CHEMISTRY, 2010, 2 (07) : 566 - 570
  • [4] Label-free and Real-Time Sequence Specific DNA Detection Based on Supramolecular Self-assembly
    Tang, Yanli
    Achyuthan, Komandoor E.
    Whitten, David G.
    LANGMUIR, 2010, 26 (09) : 6832 - 6837
  • [5] Functional nanomaterials via crystallization-driven self-assembly
    Manners, Ian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [6] Crystallization-driven ordering and self-assembly in bottlebrush polymers
    Kim, Joey
    Hadjichristidis, Nikos
    Kornfield, Julia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [7] Micelle engineering via crystallization-driven self-assembly
    Manners, Ian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [8] Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers
    Ganda, Sylvia
    Stenzel, Martina H.
    PROGRESS IN POLYMER SCIENCE, 2020, 101
  • [9] Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly
    Yang, Sanghee
    Choi, Tae-Lim
    CHEMICAL SCIENCE, 2020, 11 (32) : 8416 - 8424
  • [10] Hierarchical Superstructures by Combining Crystallization-Driven and Molecular Self-Assembly
    Frank, Andreas
    Hils, Christian
    Weber, Melina
    Kreger, Klaus
    Schmalz, Holger
    Schmidt, Hansooo-Werner
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (40) : 21767 - 21771