BoilerNet: Deep reinforcement learning-based combustion optimization network for pulverized coal boiler

被引:4
作者
Wang, Zhi [1 ]
Yin, Yongbo [1 ]
Yao, Guojia [2 ]
Li, Kuangyu [1 ]
Liu, Yang [1 ]
Liu, Xuanqi [1 ]
Tang, Zhenhao [2 ]
Zhang, Fan [3 ]
Peng, Xianyong [1 ]
Lin, Jinxing [4 ,5 ]
Zhu, Hang [1 ]
Zhou, Huaichun [1 ]
机构
[1] China Univ Min & Technol, Jiangsu Smart Energy Technol & Equipment Engn Res, Sch Low carbon Energy & Power Engn, Xuzhou 221116, Peoples R China
[2] Northeast Elect Power Univ, Sch Automat Engn, Jilin 132012, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China
关键词
Energy systems; Coal-fired boiler; Combustion optimization; Deep learning; Reinforcement learning; BoilerNet; EMISSIONS; SYSTEM;
D O I
10.1016/j.energy.2025.134804
中图分类号
O414.1 [热力学];
学科分类号
摘要
Reinforcement learning is considered a potential technology for the next phase of intelligent control. However, its reliance on trial-and-error learning prevents direct interaction between the agent and the physical boiler, driving the development of the digital twin boiler. To address the challenges of low prediction accuracy under transient loads and in time-consuming decision-making, we propose an efficient deep reinforcement learning combustion optimization network (BoilerNet), coupled with a digital twin boiler. The digital twin boiler integrates a multi-objective model employing advanced triangular convolutional neural networks (TR-CNN), which reduces model complexity by adjusting the width factor. To enhance decision-making efficiency, a combustion optimization agent based on soft actor-critic (SAC) was designed, with policy and value functions developed for the combustion state and manipulated variables. Simulation experiments using historical boiler data demonstrate that with a TR-CNN width factor of W = 0.25, the inference time was 11.894 mu s, a 28.92 % reduction compared to the pre-improved model. Compared with the traditional deep deterministic policy gradient (DDPG), the SAC- based combustion optimized a greater portion of samples, achieving 99.36% optimization, while DDPG achieved 89.98 %. Additionally, SAC increased thermal efficiency by 0.357 % and reduced NOx emissions by 20.244 mg/ m3.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
[Anonymous], 2023, World Energy Outlook 2023-Analysis-IEA
[2]   Future technologies for building sector to accelerate energy transition [J].
Ascione, Fabrizio ;
Nizetic, Sandro ;
Wang, Fuqiang .
ENERGY AND BUILDINGS, 2025, 326
[3]   Heat transfer prediction of supercritical water with artificial neural networks [J].
Chang, Wanli ;
Chu, Xu ;
Fareed, Anes Fatima Binte Shaik ;
Pandey, Sandeep ;
Luo, Jiayu ;
Weigand, Bernhard ;
Laurien, Eckart .
APPLIED THERMAL ENGINEERING, 2018, 131 :815-824
[4]   Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation [J].
Chen, Heng ;
Bokov, Dmitry ;
Chupradit, Supat ;
Hekmatifar, Maboud ;
Mahmoud, Mustafa Z. ;
Sabetvand, Roozbeh ;
Duan, Jinying ;
Toghraie, Davood .
CASE STUDIES IN THERMAL ENGINEERING, 2021, 28
[5]   The combustion process of methyl ester-biodiesel in the presence of different nanoparticles: A molecular dynamics approach [J].
Chen, Ying ;
Alizadeh, As'ad ;
Abed, Azher M. ;
Nasajpour-Esfahani, Navid ;
Smaisim, Ghassan Fadhil ;
Hadrawi, Salema K. ;
Zekri, Hussein ;
Sabetvand, Roozbeh ;
Toghraie, Davood .
JOURNAL OF MOLECULAR LIQUIDS, 2023, 373
[6]   Effective pre-training of a deep reinforcement learning agent by means of long short-term memory models for thermal energy management in buildings [J].
Coraci, Davide ;
Brandi, Silvio ;
Capozzoli, Alfonso .
ENERGY CONVERSION AND MANAGEMENT, 2023, 291
[7]   Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions [J].
Eom, Yong Hwan ;
Chung, Yoong ;
Park, Minsu ;
Hong, Sung Bin ;
Kim, Min Soo .
ENERGY, 2021, 228
[8]   Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence [J].
Forster, Piers M. ;
Smith, Chris ;
Walsh, Tristram ;
Lamb, William F. ;
Lamboll, Robin ;
Hall, Bradley ;
Hauser, Mathias ;
Ribes, Aurelien ;
Rosen, Debbie ;
Gillett, Nathan P. ;
Palmer, Matthew D. ;
Rogelj, Joeri ;
von Schuckmann, Karina ;
Trewin, Blair ;
Allen, Myles ;
Andrew, Robbie ;
Betts, Richard A. ;
Borger, Alex ;
Boyer, Tim ;
Broersma, Jiddu A. ;
Buontempo, Carlo ;
Burgess, Samantha ;
Cagnazzo, Chiara ;
Cheng, Lijing ;
Friedlingstein, Pierre ;
Gettelman, Andrew ;
Guetschow, Johannes ;
Ishii, Masayoshi ;
Jenkins, Stuart ;
Lan, Xin ;
Morice, Colin ;
Muhle, Jens ;
Kadow, Christopher ;
Kennedy, John ;
Killick, Rachel E. ;
Krummel, Paul B. ;
Minx, Jan C. ;
Myhre, Gunnar ;
Naik, Vaishali ;
Peters, Glen P. ;
Pirani, Anna ;
Pongratz, Julia ;
Schleussner, Carl-Friedrich ;
Seneviratne, Sonia ;
Szopa, Sophie ;
Thorne, Peter ;
Kovilakam, Mahesh V. M. ;
Majamaki, Elisa ;
Jalkanen, Jukka-Pekka ;
van Marle, Margreet .
EARTH SYSTEM SCIENCE DATA, 2024, 16 (06) :2625-2658
[9]  
Fujimoto S, 2018, PR MACH LEARN RES, V80
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1