Inter-DS: a cost saving algorithm for expensive constrained multi-fidelity blackbox optimization

被引:0
作者
Alarie, Stephane [2 ,3 ]
Audet, Charles [1 ,2 ]
Diago, Miguel [3 ]
Le Digabel, Sebastien [1 ,2 ]
Lebeuf, Xavier [1 ,2 ]
机构
[1] Polytech Montreal, Dept Math & Ind Engn, 2500 Chem Polytech, Montreal, PQ H3T 1J4, Canada
[2] GERAD, 2920 Chem Tour, Montreal, PQ H3T 1N8, Canada
[3] Hydroquebec, 1800 Bd Lionel Boulet, Varennes, PQ J3X 1S1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Blackbox optimization; Derivative-free optimization; Multi-fidelity; Constrained optimization; Direct search methods; Static surrogates; PATTERN SEARCH;
D O I
10.1007/s10589-024-00645-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This work introduces Inter-DS, a blackbox optimization algorithmic framework for computationally expensive constrained multi-fidelity problems. When applying a direct search method to such problems, the scarcity of feasible points may lead to numerous costly evaluations spent on infeasible points. Our proposed algorithm addresses this issue by leveraging multi-fidelity information, allowing for premature interruption of an evaluation when a point is estimated to be infeasible. These estimations are controlled by a biadjacency matrix, for which we propose a construction. The proposed method acts as an intermediary component bridging any non multi-fidelity direct search solver and a multi-fidelity blackbox problem, giving the user freedom of choice for the solver. A series of computational tests are conducted to validate the approach. The results show a significant improvement in solution quality when an initial feasible starting point is provided. When this condition is not met, the outcomes are contingent upon specific properties of the blackbox.
引用
收藏
页码:607 / 629
页数:23
相关论文
共 48 条
  • [1] Agrawal A., 2023, Technical Report 2311.15137, DOI [10.48550/arXiv.2311.15137, DOI 10.48550/ARXIV.2311.15137]
  • [2] Hierarchically constrained blackbox optimization
    Alarie, Stephane
    Audet, Charles
    Jacquot, Paulin
    Le Digabel, Sebastien
    [J]. OPERATIONS RESEARCH LETTERS, 2022, 50 (04) : 446 - 451
  • [3] OPTIMIZATION OF STOCHASTIC BLACKBOXES WITH ADAPTIVE PRECISION\ast
    Alarie, Stephane
    Audet, Charles
    Bouchet, Pierre-Yves
    Le Digabel, Sebastien
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 3127 - 3156
  • [4] Two decades of blackbox optimization applications
    Alarie, Stephane
    Audet, Charles
    Gheribi, Aimen E.
    Kokkolaras, Michael
    Le Digabel, Sebastien
    [J]. EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2021, 9
  • [5] Parallel metaheuristics: recent advances and new trends
    Alba, Enrique
    Luque, Gabriel
    Nesmachnow, Sergio
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2013, 20 (01) : 1 - 48
  • [6] Andres-Thio N., 2024, Technical Report G-2024-37
  • [7] Bifidelity Surrogate Modelling: Showcasing the Need for New Test Instances
    Andres-Thio, Nicolau
    Munoz, Mario Andres
    Smith-Miles, Kate
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 3007 - 3022
  • [8] Mesh adaptive direct search algorithms for constrained optimization
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 188 - 217
  • [9] A pattern search filter method for nonlinear programming without derivatives
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (04) : 980 - 1010
  • [10] Audet C., 2017, DERIVATIVE FREE BLAC, DOI [10.1007/978-3-319-68913-5, DOI 10.1007/978-3-319-68913-5]