The Threshold Effects for the Two Particle Discrete Schrodinger Operators on Lattices

被引:0
作者
Lakaev, S. N. [1 ,2 ]
Bozorov, I. N. [2 ,3 ]
Khamidov, Sh. I. [1 ,2 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Acad Sci Uzbek, Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[3] Kimyo Int Univ Tashkent, Tashkent 100121, Uzbekistan
关键词
two-particle system; discrete Schrodinger operator; essential spectrum; bound states; Fredholm determinant; threshold resonance; threshold eigenvalue; BOUND-STATES; EIGENVALUES; NUMBER; EXISTENCE; SYSTEM; MODEL;
D O I
10.1134/S1995080224606015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Schrodinger operators H-gamma lambda(K), with K is an element of T-d, the fixed quasimomentum of the particles pair, associated with a system of two identical bosons on the d-dimensional lattice Z(d), d >= 3 with on one site and on nearest-neighboring-site interactions of magnitudes gamma is an element of R and lambda is an element of R, respectively. We partition the (gamma,lambda)- plane into connected components such that, in each connected components the number of eigenvalues of the Schrodinger operator H-gamma lambda(0) remains constant. Moreover, we establish that the operator H-lambda gamma(0) has in each boundary of the connected components either a threshold eigenvalue or a threshold resonance. We also find a sharp lower bound for the number of isolated eigenvalues of H-gamma lambda(K) overall K is an element of T-d, on each boundary of the connected components.
引用
收藏
页码:5098 / 5110
页数:13
相关论文
共 29 条
[11]   The Number of Eigenvalues of the Three-Particle Schrodinger Operator on Three Dimensional Lattice [J].
Khalkhuzhaev, A. M. ;
Abdullaev, J. I. ;
Boymurodov, J. Kh. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) :3486-3495
[12]   Puiseux Series Expansion for Eigenvalue of the Generalized Friedrichs Model with the Perturbation of Rank One [J].
Kurbanov, Sh. Kh. ;
Dustov, S. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) :1365-1372
[13]   The Essential Spectrum of a Three Particle Schrodinger Operator on Lattices [J].
Lakaev, S. N. ;
Boltaev, A. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) :1176-1187
[14]   On the Number and Location of Eigenvalues of the Two Particle Schr odinger Operator on a Lattice [J].
Lakaev, S. N. ;
Khamidov, Sh. I. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) :3541-3551
[15]   The Exact Number of Eigenvalues of the Discrete Schrodinger Operators in One-Dimensional Case [J].
Lakaev, S. N. ;
Alladustova, I. U. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (06) :1294-1303
[16]   Threshold effects in a two-fermion system on an optical lattice [J].
Lakaev, S. N. ;
Abdukhakimov, S. H. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 203 (02) :648-663
[17]   THE NUMBER OF BOUND STATES OF A ONE-PARTICLE HAMILTONIAN ON A THREE-DIMENSIONAL LATTICE [J].
Lakaev, S. N. ;
Bozorov, I. N. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) :360-376
[18]   Two-fermion lattice Hamiltonian with first and second nearest-neighboring-site interactions [J].
Lakaev, Saidakhmat N. ;
Motovilov, Alexander K. ;
Abdukhakimov, Saidakbar Kh .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (31)
[19]   Bose-Hubbard models with on-site and nearest-neighbor interactions: exactly solvable case [J].
Lakaev, Saidakhmat N. ;
Kholmatov, Shokhrukh Yu ;
Khamidov, Shakhobiddin, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (24)
[20]   The existence and location of eigenvalues of the one particle Hamiltonians on lattices [J].
Lakaev, Saidalhmat ;
Ozdemir, Ender .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (06) :1693-1703