The Threshold Effects for the Two Particle Discrete Schrodinger Operators on Lattices

被引:0
作者
Lakaev, S. N. [1 ,2 ]
Bozorov, I. N. [2 ,3 ]
Khamidov, Sh. I. [1 ,2 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Acad Sci Uzbek, Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[3] Kimyo Int Univ Tashkent, Tashkent 100121, Uzbekistan
关键词
two-particle system; discrete Schrodinger operator; essential spectrum; bound states; Fredholm determinant; threshold resonance; threshold eigenvalue; BOUND-STATES; EIGENVALUES; NUMBER; EXISTENCE; SYSTEM; MODEL;
D O I
10.1134/S1995080224606015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Schrodinger operators H-gamma lambda(K), with K is an element of T-d, the fixed quasimomentum of the particles pair, associated with a system of two identical bosons on the d-dimensional lattice Z(d), d >= 3 with on one site and on nearest-neighboring-site interactions of magnitudes gamma is an element of R and lambda is an element of R, respectively. We partition the (gamma,lambda)- plane into connected components such that, in each connected components the number of eigenvalues of the Schrodinger operator H-gamma lambda(0) remains constant. Moreover, we establish that the operator H-lambda gamma(0) has in each boundary of the connected components either a threshold eigenvalue or a threshold resonance. We also find a sharp lower bound for the number of isolated eigenvalues of H-gamma lambda(K) overall K is an element of T-d, on each boundary of the connected components.
引用
收藏
页码:5098 / 5110
页数:13
相关论文
共 29 条
[1]   On the Existence of Bound States of a System of Two Fermions on the Two-Dimensional Cubic Lattice [J].
Abdukhakimov, S. Kh. ;
Lakaev, S. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) :1241-1250
[2]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[3]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[4]   The Existence and Asymptotics of Eigenvalues of Schrodinger Operator on Two Dimensional Lattices [J].
Boltaev, A. T. ;
Almuratov, F. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (12) :3460-3470
[5]   On the Number of Eigenvalues of the Lattice Model Operator in One-Dimensional Case [J].
Bozorov, I. N. ;
Khurramov, A. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (02) :353-365
[6]   The Number and Location of Eigenvalues of the Two Particle Discrete Schrodinger Operators [J].
Bozorov, I. N. ;
Khamidov, Sh. I. ;
Lakaev, S. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (11) :3079-3090
[7]   Formation of ultracold fermionic NaLi Feshbach molecules [J].
Heo, Myoung-Sun ;
Wang, Tout T. ;
Christensen, Caleb A. ;
Rvachov, Timur M. ;
Cotta, Dylan A. ;
Choi, Jae-Hoon ;
Lee, Ye-Ryoung ;
Ketterle, Wolfgang .
PHYSICAL REVIEW A, 2012, 86 (02)
[8]   Threshold of discrete Schrodinger operators with delta potentials on n-dimensional lattice [J].
Hiroshima, Fumio ;
Muminov, Zahriddin ;
Kuljanov, Utkir .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (05) :919-954
[9]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111
[10]   The cold atom Hubbard toolbox [J].
Jaksch, D ;
Zoller, P .
ANNALS OF PHYSICS, 2005, 315 (01) :52-79