Numerical Shape Optimization of an Isothermal Compressible Navier-Stokes Flow

被引:0
作者
Zhang, Keyang [1 ]
Li, Jiajie [2 ]
Zhu, Shengfeng [2 ,3 ,4 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[3] East China Normal Univ, Key Lab, Minist Educ, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Shape optimization; Compressible Navier-Stokes equation; Finite element; Shape gradient; DOMAIN DEPENDENCE; DRAG; DERIVATIVES; GRADIENTS; EQUATIONS; BODY;
D O I
10.1007/s10957-025-02634-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider numerical shape optimization of a compressible isothermal fluid model. The constrained system involves regularized compressible isothermal Navier-Stokes equations. The distributed and boundary type of shape gradients for objective functions (such as inverse problem, and energy dissipation power type) are derived via the adjoint method. The regularized Navier-Stokes equations are discretized with mixed finite element method and solved by the Leray-Schauder fixed point iterative scheme. Numerical results are presented to illustrate the effectiveness of the optimization algorithm proposed.
引用
收藏
页数:25
相关论文
共 39 条
  • [1] ADAMS R. A., 2003, Sobolev spaces, V140
  • [2] Differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow
    Bello, JA
    FernandezCara, E
    Lemoine, J
    Simon, J
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) : 626 - 640
  • [3] BREZZI F., 1991, Mixed and Hybrid Finite Element Methods, DOI 10. 1007/978-1-4612- 3172-1.
  • [4] Delfour M, 2011, ADV DES CONTROL, pXIX, DOI 10.1137/1.9780898719826
  • [5] Topology optimization of slightly compressible fluids
    Evgrafov, A
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2006, 86 (01): : 46 - 62
  • [6] Girault V., 1986, FINITE ELEMENT METHO, DOI DOI 10.1007/978-3-642-61623-5
  • [7] Convergent evolving finite element approximations of boundary evolution under shape gradient flow
    Gong, Wei
    Li, Buyang
    Rao, Qiqi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (05) : 2667 - 2697
  • [8] IMPROVED DISCRETE BOUNDARY TYPE SHAPE GRADIENTS FOR PDE-CONSTRAINED SHAPE OPTIMIZATION
    Gong, Wei
    Li, Jiajie
    Zhu, Shengfeng
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) : A2464 - A2505
  • [9] Haslinger J., 2003, Introduction to Shape Optimization: Theory, Approximation, and Computation
  • [10] New development in freefem++
    Hecht, F.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) : 251 - 265