Influence of cellular dendritic structure and grain orientation on deformation behavior of additively manufactured AlSi10Mg alloy

被引:0
作者
Romanova, V. [1 ]
Borodina, A. [1 ,2 ]
Dymnich, E. [1 ]
Balokhonov, V. [1 ,2 ]
Balokhonov, R. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Strength Phys & Mat Sci, Tomsk, Russia
[2] Natl Res Tomsk State Univ, Tomsk, Russia
基金
俄罗斯科学基金会;
关键词
Al-Si alloys; Laser powder bed fusion; Cellular dendritic structure; CPFEM simulations; 539.4; 539.5; LASER; MICROSTRUCTURE; FATIGUE; STRESS;
D O I
10.1007/s11182-024-03296-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper investigates the combined effect from the dendritic structure and grain orientation on the deformation behavior of the additively manufactured AlSi10Mg alloy. Micromechanical models comprising Al cells separated by a Si-rich eutectic network are constructed using the experimental data. The constitutive behavior of the Al phase is described in terms of the crystal plasticity to consider its crystallographic orientation. Intragranular stress and strain partitioning between Al and Si phases is analyzed numerically. The cellular dendritic structure is shown to be responsible for the anisotropy of mechanical properties of as-built Al-Si alloys.
引用
收藏
页码:1668 / 1676
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2013, Abaqus Analysis User's Guide (6.13) 22.5.2
  • [2] Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior
    Brandl, Erhard
    Heckenberger, Ulrike
    Holzinger, Vitus
    Buchbinder, Damien
    [J]. MATERIALS & DESIGN, 2012, 34 : 159 - 169
  • [3] Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy
    Girelli, Luca
    Tocci, Marialaura
    Gelfi, Marcello
    Pola, Annalisa
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 739 : 317 - 328
  • [4] Fatigue and Fracture Behavior of AlSi10Mg Manufactured by Selective Laser Melting: A Review
    Jiang, Z.
    Sun, J.
    Berto, F.
    Wang, X.
    Qian, G.
    [J]. PHYSICAL MESOMECHANICS, 2023, 26 (04) : 367 - 390
  • [5] Evaluation of the stress-strain relationship of constituent phases in AlSi10Mg alloy produced by selective laser melting using crystal plasticity FEM
    Kim, Dong-Kyu
    Hwang, Ji-Hyun
    Kim, Eun-Young
    Heo, Yoon-Uk
    Woo, Wanchuck
    Choi, Shi-Hoon
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 687 - 697
  • [6] A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties
    Kotadia, H. R.
    Gibbons, G.
    Das, A.
    Howes, P. D.
    [J]. ADDITIVE MANUFACTURING, 2021, 46
  • [7] Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg
    Li, P.
    Kim, Y.
    Bobel, A. C.
    Hector, L. G., Jr.
    Sachdev, A. K.
    Kumar, S.
    Bower, A. F.
    [J]. ACTA MATERIALIA, 2021, 220 (220)
  • [8] Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys
    Li, Zan
    Li, Zhiqiang
    Tan, Zhanqiu
    Xiong, Ding-Bang
    Guo, Qiang
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 127
  • [9] Fracture resistance of AlSi10Mg fabricate d by laser powder b e d fusion
    Paul, Moses J.
    Liu, Qian
    Best, James P.
    Li, Xiaopeng
    Kruzic, Jamie J.
    Ramamurty, Upadrasta
    Gludovatz, Bernd
    [J]. ACTA MATERIALIA, 2021, 211
  • [10] Micromechanical study of intragranular stress and strain partitioning in an additively manufactured AlSi10Mg alloy
    Romanova, V.
    Balokhonov, R.
    Borodina, A.
    Zinovieva, O.
    Dymnich, E.
    Fortuna, S.
    Shugurov, A.
    [J]. THIN-WALLED STRUCTURES, 2024, 196