Normalized solutions for Kirchhoff equations with Sobolev critical exponent and mixed nonlinearities

被引:9
作者
Chen, Sitong [1 ]
Tang, Xianhua [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
35J20; 35J62; 35Q55; GROUND-STATES; EXISTENCE;
D O I
10.1007/s00208-024-02982-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on the existence of normalized solutions for the following Kirchhoff equation: { -(a + b integral(3 )(R)|del u|(2)dx) Delta u + lambda u = u(5 )+ mu|u|(q-2)u, x is an element of R-3, integral(R)u(3 )(2)dx = c, where a, b, c > 0, mu is an element of R and 2 < q < 6, lambda is an element of R will arise as a Lagrange multiplier that is not a priori given. By using new analytical techniques, the paper establishes several existence results for the case mu > 0: (1) The existence of two solutions, one being a local minimizer and the other of mountain-pass type, under explicit conditions on c when 2 < q < 10/3. (2) The existence of a mountain-pass type solution under explicit conditions on c when 10/3 <= q < 14/3. (3) The existence of a ground state solution for all c > 0 when 14/3 <= q < 6. Furthermore, the paper presents the first non-existence result for the case mu <= 0 and 2 < q < 6. In particular, refined estimates of energy levels are proposed, suggesting a new threshold of compactness in the L-2-constraint. This study addresses an open problem for 2 < q < 10/3 and fills a gap in the case 10/3 <= q < 14/3. We believe that our approach can be applied to a broader range of nonlinear terms with Sobolev critical growth, and the underlying ideas have potential for future development and applicability.
引用
收藏
页码:2783 / 2836
页数:54
相关论文
共 21 条
[1]   Ground state solution for a class of indefinite variational problems with critical growth [J].
Alves, Claudianor O. ;
Germano, Geilson F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (01) :444-477
[2]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
Chen S., 2023, CALC VAR PARTIAL DIF, V62, P37, DOI [10.1007/s00526-022-02375-5, DOI 10.1007/S00526-022-02375-5]
[5]   Another look at Schrödinger equations with prescribed mass [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 :435-479
[6]   Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases [J].
Chen, Sitong ;
Radulescu, Vicentiu D. ;
Tang, Xianhua .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) :773-806
[7]  
Ghoussoub N., 1993, Cambridge Tracts in Mathematics, V107, DOI DOI 10.1017/CBO9780511551703
[8]   Orbital stability of ground states for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Jendrej, Jacek ;
Le, Thanh Trung ;
Visciglia, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 :158-179
[9]   Multiple normalized solutions for a Sobolev critical Schrodinger equation [J].
Jeanjean, Louis ;
Thanh Trung Le .
MATHEMATISCHE ANNALEN, 2022, 384 (1-2) :101-134
[10]   Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent [J].
Li, Gongbao ;
Luo, Xiao ;
Yang, Tao .
ANNALES FENNICI MATHEMATICI, 2022, 47 (02) :895-925