Polarization Vectors of Plane Waves in Semi-Isotropic Thermoelastic Micropolar Solids

被引:0
作者
Murashkin, E. V. [1 ]
Radayev, Y. N. [1 ]
机构
[1] RAS, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
基金
俄罗斯科学基金会;
关键词
micropolar thermoelasticity; semi-isotropic solid; translational displacement; spinor displacement; plane time-harmonic wave; longitudinal wave; transverse wave; wavenumber; complex amplitude; phase plane; dispersion equation; polarization vector; FORMULATION;
D O I
10.1134/S0025654424700353
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The present paper deals with problems of propagation of coupled time-harmonic waves of temperature increment, translational and spinor displacements in a semi-isotropic thermoelastic solid. The governing couple partial differential equations of semi-isotropic thermoelastic solids are revisited. Dispersion equations for the wavenumbers of plane harmonic coupled thermoelastic longitudinal waves (bicubic equation) and transverse wave (biquartic equation) are obtained and solved. The roots of mentioned algebraic equations are calculated and normal wavenumbers are discriminated. The spatial polarizations of coupled time-harmonic thermoelastic waves have been studied. It is shown that the transverse plane wave carrying the two spatial polarizations in fact does not exist and can not be observed in semi-isotropic micropolar media due to existence of direct and mirror wavemodes.
引用
收藏
页码:3880 / 3887
页数:8
相关论文
共 27 条
  • [1] Willson A.J., The micropolar elastic vibrations of a circular cylinder, Int. J. Eng. Sci, 10, pp. 17-22, (1972)
  • [2] Murashkin E.V., Radaev Y.N., On strong and weak discontinuities of the coupled thermomechanical field in micropolar thermoelastic type-II continua, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 37, 4, pp. 85-97, (2014)
  • [3] Kovalev V.A., Murashkin E.V., Radayev Y.N., A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua,” Izv. Saratov, Univ. Nov. Ser. Ser.: Mat. Mekh. Informat, 14, pp. 77-87, (2014)
  • [4] Kovalev V.A., Murashkin E.V., Radayev Y.N., On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua,” Izv. Saratov, Univ. Ser.: Mat. Mekh. Informat, 15, pp. 79-89, (2015)
  • [5] Achenbach J.D., Wave Propagation in Elastic Solids, North-Holland Series in Applied Mathematics and Mechanics, (1973)
  • [6] Nowacki W., Theory of Asymmetric Elasticity, (1986)
  • [7] Smith C., Waves in micropolar elastic solids, Int. J. Eng. Sci, 5, pp. 741-746, (1967)
  • [8] Maugin G.A., Acceleration waves in simple and linear viscoelastic micropolar materials, Int. J. Eng. Sci, 12, pp. 143-157, (1974)
  • [9] Murashkin E.V., Radayev Y.N., Thermic and athermic plane harmonic waves in acentric isotropic solid, Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., 56, 2, pp. 99-107, (2023)
  • [10] Murashkin E.V., Radayev Y.N., Direct, inverse and mirror wave modes of coupled displacements and microrotations monochromatic plane waves in hemitropic micropolar media, Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva Ser.: Mekh. Pred. Sost., 48, 2, pp. 115-127, (2021)