Structure, Phase Composition, and Surface Properties of R2M9 High-Speed Steel

被引:0
作者
Ivanov, Yu. F. [1 ]
Gromov, V. E. [2 ]
Yuryev, A. B. [2 ]
Minenko, S. S. [2 ]
Semin, A. P. [2 ]
Chapaikin, A. S. [2 ]
机构
[1] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
[2] Siberian State Ind Univ, Novokuznetsk 654007, Russia
来源
JOURNAL OF SURFACE INVESTIGATION | 2024年 / 18卷 / 06期
基金
俄罗斯科学基金会;
关键词
plasma surfacing; substrate; phase and elemental composition; mechanical and tribological properties; MICROSTRUCTURE; WEAR;
D O I
10.1134/S1027451024701301
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Plasma surfacing with a thickness of 4-5 mm (argon-plasma-forming gas) was carried out in a protective alloying atmosphere of nitrogen using a non-current-carrying filler flux-cored wire PP-R2M9. Using methods of modern physical materials science, the structural-phase states, microhardness, and tribological properties of surfacing high-speed steel R2M9 on medium-carbon steel 30KhGSA were studied. It has been established that the deposited layer is characterized by the presence of a carbide frame. The main phases of the deposited layer are a solid solution based on alpha-iron (63 wt %) and carbides of complex composition Me6C, Me23C6, and Me7C3 (34 wt %). The gamma-iron based solid solution is present in a small amount (3 wt %). Carbides of the Me6C type, which are the main carbide phase, are localized at the boundaries and in the bulk of alpha-phase grains, while molybdenum carbide particles of the Mo2C composition are found only in the bulk of the grains. At the junctions of alpha-phase grains, plastic eutectic grains enriched in atoms of iron, molybdenum, tungsten, and carbon are observed. The microhardness of the deposited layer varies across the cross section from 6.6 to 5.2 GPa, the wear parameter is 1.5 x 10(-5) mm(3)/(N m), the friction coefficient is 0.57, and the scalar density of randomly distributed dislocations is 7.6 x 10(10) cm(-2).
引用
收藏
页码:1395 / 1400
页数:6
相关论文
共 22 条
[1]  
Carter C. B., 2016, Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry
[2]  
Chapaikin A. S., 2024, Vestn. Sib. Gos. Ind. Univ, V1, P35, DOI [10.57070/2304-44-97-2024-1(47)-35-47, DOI 10.57070/2304-44-97-2024-1(47)-35-47]
[3]   A modified M2 high-speed steel enhanced by in-situ synthesized core-shell MC carbides [J].
Chen, Nan ;
Chen, Long-wei ;
Teng, Hao ;
Li, Zhi-you ;
Yuan, Tie-chui .
JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2024, 31 (01) :84-100
[4]  
Egerton F. R., 2016, PHYS PRINCIPLES ELEC, DOI [10.1007/978-3-319-39877-8, DOI 10.1007/978-3-319-39877-8]
[5]  
FASISKA EJ, 1967, T METALL SOC AIME, V239, P1818
[6]  
Filho O., 2014, Mater. Sci. Forum, V802, P102, DOI [10.4028/www.scientific.net/MSF.802.102, DOI 10.4028/WWW.SCIENTIFIC.NET/MSF.802.102]
[7]  
Gromov V. E., 2024, Surfacing of Tungsten-Molybdenum High-Speed Steel after Tempering and Electron Beam Processing
[8]  
Gromov V. E., 2024, Structure, Properties, and Models of High-Speed Steel after Tempering and Electron Beam Processing
[9]   Structure and Properties of High-Speed Steel Surfaised Layer Irradiated by Pulsed Electron Beam [J].
Ivanov, Yu. F. ;
Gromov, V. E. ;
Guseva, T. P. ;
Chapaikin, A. S. ;
Vashchuk, E. S. ;
Romanov, D. A. .
JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (02) :361-371
[10]   Electron Microscopy of High-Speed Steel/30HGSA Steel Interface [J].
Ivanov, Yu. F. ;
Gromov, V. E. ;
Potekaev, A. I. ;
Chapaikin, A. S. ;
Semin, A. P. ;
Guseva, T. P. .
RUSSIAN PHYSICS JOURNAL, 2024, 67 (01) :24-33