Leveraging Multi-omics to Disentangle the Complexity of Ovarian Cancer

被引:0
作者
Lin, Shijuan [1 ]
Nguyen, Lily L. [1 ]
McMellen, Alexandra [2 ]
Leibowitz, Michael S. [2 ]
Davidson, Natalie [1 ]
Spinosa, Daniel [3 ]
Bitler, Benjamin G. [1 ]
机构
[1] Univ Colorado Denver, Dept Obstet & Gynecol, Div Reprod Sci, Anschutz Med Campus 12700 East 19th Ave MS 8613, Aurora, CO 80045 USA
[2] Childrens Hosp Colorado, Ctr Canc & Blood Disorders, Aurora, CO USA
[3] Univ Colorado Denver, Dept Obstet & Gynecol, Gynecol Oncol, Anschutz Med Campus, Aurora, CO USA
基金
美国国家卫生研究院;
关键词
MOLECULAR SUBTYPES; GENE SIGNATURES; INTEGRATION; STRATEGIES; BULK;
D O I
10.1007/s40291-024-00757-3
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
To better understand ovarian cancer lethality and treatment resistance, sophisticated computational approaches are required that address the complexity of the tumor microenvironment, genomic heterogeneity, and tumor evolution. The ovarian cancer tumor ecosystem consists of multiple tumors and cell types that support disease growth and progression. Over the last two decades, there has been a revolution in -omic methodologies to broadly define components and essential processes within the tumor microenvironment, including transcriptomics, metabolomics, proteomics, genome sequencing, and single-cell analyses. While most of these technologies comprehensively characterize a single biological process, there is a need to understand the biological and clinical impact of integrating multiple -omics platforms. Overall, multi-omics is an intriguing analytic framework that can better approximate biological complexity; however, data aggregation and integration pipelines are not yet sufficient to reliably glean insights that affect clinical outcomes.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 56 条
[51]   Comprehensive Cross-Population Analysis of High-Grade Serous Ovarian Cancer Supports No More Than Three Subtypes [J].
Way, Gregory P. ;
Rudd, James ;
Wang, Chen ;
Hamidi, Habib ;
Fridley, Brooke L. ;
Konecny, Gottfried E. ;
Goode, Ellen L. ;
Greene, Casey S. ;
Doherty, Jennifer A. .
G3-GENES GENOMES GENETICS, 2016, 6 (12) :4097-4103
[52]   Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes [J].
Whyte, Warren A. ;
Orlando, David A. ;
Hnisz, Denes ;
Abraham, Brian J. ;
Lin, Charles Y. ;
Kagey, Michael H. ;
Rahl, Peter B. ;
Lee, Tong Ihn ;
Young, Richard A. .
CELL, 2013, 153 (02) :307-319
[53]  
World Health Organization (WHO), 2020, Female Genital Tumours
[54]   Transglutaminase 2 contributes to a TP53-induced autophagy program to prevent oncogenic transformation [J].
Yeo, Shi Yun ;
Itahana, Yoko ;
Guo, Alvin Kunyao ;
Han, Rachel ;
Iwamoto, Kozue ;
Hung Thanh Nguyen ;
Bao, Yi ;
Kleiber, Kai ;
Wu, Ya Jun ;
Bay, Boon Huat ;
Voorhoeve, Mathijs ;
Itahana, Koji .
ELIFE, 2016, 5
[55]   BET Inhibitors Suppress ALDH Activity by Targeting ALDH1A1 Super-Enhancer in Ovarian Cancer [J].
Yokoyama, Yuhki ;
Zhu, Hengrui ;
Lee, Jeong Heon ;
Kossenkov, Andrew V. ;
Wu, Sherry Y. ;
Wickramasinghe, Jayamanna M. ;
Yin, Xiangfan ;
Palozola, Katherine C. ;
Gardini, Alessandro ;
Showe, Louise C. ;
Zaret, Kenneth S. ;
Liu, Qin ;
Speicher, David ;
Conejo-Garcia, Jose R. ;
Bradner, James E. ;
Zhang, Zhiguo ;
Sood, Anil K. ;
Ordog, Tamas ;
Bitler, Benjamin G. ;
Zhang, Rugang .
CANCER RESEARCH, 2016, 76 (21) :6320-6330
[56]   The impact of different sources of heterogeneity on loss of accuracy from genomic prediction models [J].
Zhang, Yuqing ;
Bernau, Christoph ;
Parmigiani, Giovanni ;
Waldron, Levi .
BIOSTATISTICS, 2020, 21 (02) :253-268