Self-driving AMADAP laboratory: Accelerating the discovery and optimization of emerging perovskite photovoltaics: Self-driving AMADAP laboratory

被引:1
|
作者
Zhang, Jiyun [1 ,2 ]
Wu, Jianchang [1 ,2 ]
Stroyuk, Oleksandr [1 ]
Raievska, Oleksandra [1 ]
Lueer, Larry [2 ]
Hauch, Jens A. [1 ]
Brabec, Christoph J. [1 ,2 ]
机构
[1] Forschungszentrum Julich, High Throughput Methods Photovolta, Helmholtz Inst Erlangen Nurnberg, Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Fac Engn, Inst Mat Elect & Energy Technol, Dept Mat Sci, Erlangen, Germany
关键词
Autonomous research; Chemical synthesis; Machine learning; Perovskites; Photovoltaic; Semiconducting; LEAD-FREE; EFFICIENT; PERFORMANCE; HISTORY; CHEMISTRY;
D O I
10.1557/s43577-024-00816-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of new solar materials for emerging perovskite photovoltaics poses intricate multi-objective optimization challenges in a large high-dimensional composition and parameter space, with in some cases, millions of potential candidates to be explored. Solving it necessitates reproducible, user-independent laboratory work and intelligent preselection of innovative experimental methods. Materials Acceleration Platforms (MAPs) seamlessly combine robotic materials synthesis, characterization, and AI-driven data analysis, enabling the exploration of new materials. They revolutionize material development by replacing trial-and-error methods with precise, rapid experimentation and generating high-quality data for training machine learning (ML) algorithms. Device Acceleration Platforms (DAPs) focus on optimizing functional energy films and multilayer stacks. Unlike MAPs, DAPs concentrate on refining processing conditions for predetermined materials, crucial for disordered semiconductors. By fine-tuning processing parameters, DAPs significantly advance disordered semiconductor devices such as emerging photovoltaics. This article examines recent advancements in automated laboratories for perovskite material discovery and photovoltaics device optimization, showcasing in-house-developed MAPs and a DAP. These platforms cover the entire value chain, from materials to devices, addressing optimization challenges through robot-based high-throughput experimentation (HTE). Ultimately, a self-driven Autonomous Material and Device Acceleration Platforms (AMADAP) laboratory concept is proposed for autonomous functional solar material discovery using AI-guided combinational approaches.
引用
收藏
页码:1284 / 1294
页数:11
相关论文
共 50 条
  • [1] Self-driving AMADAP laboratory: Accelerating the discovery and optimization of emerging perovskite photovoltaics
    Zhang, Jiyun
    Wu, Jianchang
    Stroyuk, Oleksandr
    Raievska, Oleksandra
    Lueer, Larry
    Hauch, Jens A.
    Brabec, Christoph J.
    MRS BULLETIN, 2024,
  • [2] Self-driving laboratory for emulsion polymerization
    Pittaway, Peter M.
    Knox, Stephen T.
    Cayre, Olivier J.
    Kapur, Nikil
    Golden, Lisa
    Drillieres, Sophie
    Warren, Nicholas J.
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [3] Self-Driving Laboratory for Polymer Electronics?
    Vriza, Aikaterini
    Chan, Henry
    Xu, Jie
    CHEMISTRY OF MATERIALS, 2023, 35 (08) : 3046 - 3056
  • [4] Universal self-driving laboratory for accelerated discovery of materials and molecules
    Epps, Robert W.
    Volk, Amanda A.
    Ibrahim, Malek Y. S.
    Abolhasani, Milad
    CHEM, 2021, 7 (10): : 2541 - 2545
  • [5] A self-driving laboratory designed to accelerate the discovery of adhesive materials
    Rooney, Michael B.
    MacLeod, Benjamin P.
    Oldford, Ryan
    Thompson, Zachary J.
    White, Kolby L.
    Tungjunyatham, Justin
    Stankiewicz, Brian J.
    Berlinguette, Curtis P.
    DIGITAL DISCOVERY, 2022, 1 (04): : 382 - 389
  • [6] How to build an effective self-driving laboratory
    MacLeod, Benjamin P.
    Parlane, Fraser G. L.
    Berlinguette, Curtis P.
    MRS BULLETIN, 2023, 48 (02) : 173 - 178
  • [7] How to build an effective self-driving laboratory
    Benjamin P. MacLeod
    Fraser G. L. Parlane
    Curtis P. Berlinguette
    MRS Bulletin, 2023, 48 : 173 - 178
  • [8] Self-driving laboratory for accelerated discovery of thin-film materials
    MacLeod, B. P.
    Parlane, F. G. L.
    Morrissey, T. D.
    Hase, F.
    Roch, L. M.
    Dettelbach, K. E.
    Moreira, R.
    Yunker, L. P. E.
    Rooney, M. B.
    Deeth, J. R.
    Lai, V
    Ng, G. J.
    Situ, H.
    Zhang, R. H.
    Elliott, M. S.
    Haley, T. H.
    Dvorak, D. J.
    Aspuru-Guzik, A.
    Hein, J. E.
    Berlinguette, C. P.
    SCIENCE ADVANCES, 2020, 6 (20)
  • [9] What is a minimal working example for a self-driving laboratory?
    Baird, Sterling G.
    Sparks, Taylor D.
    MATTER, 2022, 5 (12) : 4170 - 4178
  • [10] SELF-DRIVING
    Marris, Laura
    YALE REVIEW, 2018, 106 (03): : 90 - 90