Spectral radius and k-factor-critical graphsSpectral radius and k-factor-critical graphsS. Zhou et al.

被引:0
作者
Sizhong Zhou [1 ]
Zhiren Sun [2 ]
Yuli Zhang [3 ]
机构
[1] Jiangsu University of Science and Technology,School of Science
[2] Nanjing Normal University,School of Mathematical Sciences
[3] Dalian Jiaotong University,School of Science
关键词
Graph; Spectral radius; Perfect matching; -factor-critical graph; 05C50; 05C70;
D O I
10.1007/s11227-024-06902-3
中图分类号
学科分类号
摘要
For a nonnegative integer k, a graph G is said to be k-factor-critical if G-Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-Q$$\end{document} admits a perfect matching for any Q⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\subseteq V(G)$$\end{document} with |Q|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|Q|=k$$\end{document}. In this article, we prove spectral radius conditions for the existence of k-factor-critical graphs. Our result generalizes one previous result on perfect matchings of graphs. Furthermore, we claim that the bounds on spectral radius in Theorem 3.1 are sharp.
引用
收藏
相关论文
empty
未找到相关数据