Several families of q-ary cyclic codes with length qm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^m-1$$\end{document}

被引:0
作者
Jin Li [1 ]
Huan Zhu [1 ]
Shan Huang [2 ]
机构
[1] Hefei University of Technology,School of Mathematics
[2] Anhui Vocational College of Police Officers,Department of Information Management
关键词
Cyclic code; Linear code; BCH bound; Cyclotomic coset; 94B05; 94B15;
D O I
10.1007/s12095-024-00725-y
中图分类号
学科分类号
摘要
It is very hard to construct an infinite family of cyclic codes of rate close to one half whose minimum distances have a good bound. Tang-Ding codes are very interesting, as their minimum distances have a square-root-like bound. Recently, a new generalization of Tang-Ding codes has been presented, Sun constructed several infinite families of binary cyclic codes with length 2m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{m}-1$$\end{document} and dimension near 2m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{m-1}$$\end{document} whose minimum distances much exceed the square-root bound (Sun, Finite Fields Appl. 89, 102200, 2023). In this paper, we construct several families of q-ary cyclic codes with length qm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{m}-1$$\end{document} and dimension near qm-12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q^{m}-1}{2}$$\end{document}, where q≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 3$$\end{document} is a prime power and m≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 3$$\end{document} is an integer. The minimum distances of these codes and their dual codes much exceed the square-root bound.
引用
收藏
页码:1357 / 1381
页数:24
相关论文
empty
未找到相关数据