Stability for the 2D Anisotropic Magnetohydrodynamic Equations with Only Horizontal Magnetic Diffusion

被引:0
作者
Lin, Hongxia [1 ,2 ]
Suo, Xiaoxiao [3 ]
Wu, Jiahong [4 ]
Xu, Xiaojing [5 ,6 ]
机构
[1] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[4] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[5] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[6] Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Background magnetic field; Magnetohydrodynamic equation; Horizontal magnetic diffusion; Stability; GLOBAL WELL-POSEDNESS; RESISTIVE MHD EQUATIONS; LARGE-TIME BEHAVIOR; LOCAL EXISTENCE; PARTIAL DISSIPATION; SYSTEM; REGULARITY; FIELD; UNIQUENESS; FLOWS;
D O I
10.1007/s00332-025-10147-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stability and large-time behavior of perturbations around a large, constant magnetic field in a periodic, infinite channel under specific symmetry constraints. Mathematically, the perturbations are governed by the 2D incompressible magnetohydrodynamic equations with no velocity dissipation and only horizontal magnetic diffusion. This stability result is sharp in the sense that removing this horizontal magnetic diffusion leads to instability. The proof is nontrivial and involves delicate construction of a time-weighted energy functional. Our result rigorously confirms the stabilizing effect of a background magnetic field on electrically conducting fluids.
引用
收藏
页数:36
相关论文
共 66 条
[1]  
ALEMANY A, 1979, J MECANIQUE, V18, P277
[2]   Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field [J].
Alexakis, Alexandros .
PHYSICAL REVIEW E, 2011, 84 (05)
[3]   Existence of electromagnetic-hydrodynamic waves [J].
Alfven, H .
NATURE, 1942, 150 :405-406
[4]   LONGTIME DYNAMICS OF A CONDUCTIVE FLUID IN THE PRESENCE OF A STRONG MAGNETIC-FIELD [J].
BARDOS, C ;
SULEM, C ;
SULEM, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) :175-191
[5]   STABILIZATION OF A BACKGROUND MAGNETIC FIELD ON A 2 DIMENSIONAL MAGNETOHYDRODYNAMIC FLOW [J].
Boardman, Nicki ;
Lin, Hongxia ;
Wu, Jiahong .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) :5001-5035
[6]   Global Well-Posedness of the Incompressible Magnetohydrodynamics [J].
Cai, Yuan ;
Lei, Zhen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (03) :969-993
[7]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[8]   The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion [J].
Cao, Chongsheng ;
Regmi, Dipendra ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2661-2681
[9]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[10]  
Choi K, 2021, Arxiv, DOI arXiv:2108.01811