ON A GLOBAL GRADIENT ESTIMATE IN p-LAPLACIAN PROBLEMS

被引:0
作者
Ercole, Grey [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
D O I
10.1007/s11856-025-2723-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We make explicit the p-dependence of C in the gradient estimate parallel to del u parallel to(p-1 )(infinity)<= C parallel to f parallel to(N,1) by Cianchi and Maz'ya (2011). In such inequality, the constant C is uniform with respect to f is an element of L-N,L-1(Omega), and u is the weak solution to the Poisson equation -div(|del u|(p-2)del u) = f in a bounded domain Omega subset of R-N, N >= 3, coupled with either Neumann or Dirichlet homogeneous boundary conditions. The case N = 2 with f is an element of L-q(Omega), for some q>2, is also considered .
引用
收藏
页码:945 / 968
页数:24
相关论文
共 8 条
[1]   Sobolev embeddings into BMO, VMO, and L∞ [J].
Cianchi, A ;
Pick, L .
ARKIV FOR MATEMATIK, 1998, 36 (02) :317-340
[2]   GLOBAL GRADIENT ESTIMATES IN ELLIPTIC PROBLEMS UNDER MINIMAL DATA AND DOMAIN REGULARITY [J].
Cianchi, Andrea ;
Maz'ya, Vladimir .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (01) :285-311
[3]   Global Lipschitz Regularity for a Class of Quasilinear Elliptic Equations [J].
Cianchi, Andrea ;
Maz'ya, Vladimir G. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (01) :100-133
[4]   THE LIMITING BEHAVIOR OF SOLUTIONS TO p- LAPLACIAN PROBLEMS WITH CONVECTION AND EXPONENTIAL TERMS [J].
De Araujo, Anderson L. A. ;
Ercole, Grey ;
Vargas, Julio c. lanazca .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (01) :339-359
[5]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO
[6]   THE NATURAL GENERALIZATION OF THE NATURAL CONDITIONS OF LADYZHENSKAYA AND URALTSEVA FOR ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (2-3) :311-361
[7]  
Marti TJ., 1977, KONVEXE ANAL, V54, DOI [10.1007/978-3-0348-5910-3, DOI 10.1007/978-3-0348-5910-3]
[8]  
Mazya V.G., 2009, Problemy Matematicheskogo Analiza. J. Math. Sci., V159, P104