Health & Gait: a dataset for gait-based analysis

被引:0
作者
Zafra-Palma, Jorge [1 ,2 ]
Marin-Jimenez, Nuria [3 ,4 ]
Castro-Pinero, Jose [3 ,4 ]
Cuenca-Garcia, Magdalena [3 ,4 ]
Munoz-Salinas, Rafael [1 ,2 ]
Marin-Jimenez, Manuel J. [1 ,2 ]
机构
[1] Univ Cordoba, Dept Comp & Numer Anal, Cordoba 14071, Spain
[2] Inst Maimonides Invest Biomed Cordoba IMIBIC, Cordoba 14004, Spain
[3] Univ Cadiz, Fac Educ Sci, Dept Phys Educ, GALENO Res Grp, Cadiz, Spain
[4] Inst Invest Innovac Biomed Cadiz INiBICA, Cadiz, Spain
关键词
SPEED;
D O I
10.1038/s41597-024-04327-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acquiring gait metrics and anthropometric data is crucial for evaluating an individual's physical status. Automating this assessment process alleviates the burden on healthcare professionals and accelerates patient monitoring. Current automation techniques depend on specific, expensive systems such as OptoGait or MuscleLAB, which necessitate training and physical space. A more accessible alternative could be artificial vision systems that are operable via mobile devices. This article introduces Health&Gait, the first dataset for video-based gait analysis, comprising 398 participants and 1, 564 videos. The dataset provides information such as the participant's silhouette, semantic segmentation, optical flow, and human pose. Furthermore, each participant's data includes their sex, anthropometric measurements like height and weight, and gait parameters such as step or stride length and gait speed. The technical evaluation demonstrates the utility of the information extracted from the videos and the gait parameters in tackling tasks like sex classification and regression of weight and age. Health&Gait facilitates the progression of artificial vision algorithms for automated gait analysis.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Remote Gait Type Classification System Using Markerless 2D Video [J].
Albuquerque, Pedro ;
Machado, Joao Pedro ;
Verlekar, Tanmay Tulsidas ;
Correia, Paulo Lobato ;
Soares, Luis Ducla .
DIAGNOSTICS, 2021, 11 (10)
[2]  
[Anonymous], 1996, Am J Clin Nutr, V64, p524S, DOI 10.1093/ajcn/64.3.524S
[3]   Urinary indices during dehydration, exercise, and rehydration [J].
Armstrong, LE ;
Soto, JAH ;
Hacker, FT ;
Casa, DJ ;
Kavouras, SA ;
Maresh, CM .
INTERNATIONAL JOURNAL OF SPORT NUTRITION, 1998, 8 (04) :345-355
[4]   A Database and Evaluation Methodology for Optical Flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) :1-31
[5]   Effective detection of abnormal gait patterns in Parkinson's disease patients using kinematics, nonlinear, and stability gait features [J].
Carvajal-Castano, H. A. ;
Lemos-Duque, J. D. ;
Orozco-Arroyave, J. R. .
HUMAN MOVEMENT SCIENCE, 2022, 81
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Gait Pattern in People with Multiple Sclerosis: A Systematic Review [J].
Coca-Tapia, Maria ;
Cuesta-Gomez, Alicia ;
Molina-Rueda, Francisco ;
Carratala-Tejada, Maria .
DIAGNOSTICS, 2021, 11 (04)
[8]   Biometric recognition by gait: A survey of modalities and features [J].
Connor, Patrick ;
Ross, Arun .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 167 :1-27
[9]  
Control CfD Prevention, 2007, National health and nutrition examination survey: Anthropometry procedures manual
[10]   Age and environment-related differences in gait in healthy adults using wearables [J].
Czech, Matthew D. ;
Psaltos, Dimitrios ;
Zhang, Hao ;
Adamusiak, Tomasz ;
Calicchio, Monica ;
Kelekar, Amey ;
Messere, Andrew ;
Van Dijk, Koene R. A. ;
Ramos, Vesper ;
Demanuele, Charmaine ;
Cai, Xuemei ;
Santamaria, Mar ;
Patel, Shyamal ;
Karahanoglu, F. Isik .
NPJ DIGITAL MEDICINE, 2020, 3 (01)