A review of deep learning for brain tumor analysis in MRI

被引:0
作者
Dorfner, Felix J. [1 ]
Patel, Jay B. [1 ]
Kalpathy-Cramer, Jayashree [2 ]
Gerstner, Elizabeth R. [1 ,3 ]
Bridge, Christopher P. [1 ]
机构
[1] Athinoula A Martinos Ctr Biomed Imaging, 149 13th St, Charlestown, MA 02129 USA
[2] Univ Colorado, Sch Med, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Massachusetts Gen Hosp, Canc Ctr, Boston, MA 02114 USA
关键词
GRADE GLIOMA RECOMMENDATIONS; UNCERTAINTY ESTIMATION; RESPONSE ASSESSMENT; SEGMENTATION; SYSTEM; HEALTH;
D O I
10.1038/s41698-024-00789-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring. Furthermore, it holds the potential to pave the way for personalized medicine through the prediction of tumor type, grade, genetic mutations, and patient survival outcomes. In this review, we explore the transformative potential of DL for brain tumor care and discuss existing applications, limitations, and future directions and opportunities.
引用
收藏
页数:13
相关论文
共 138 条
  • [31] Response assessment in paediatric low-grade glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group
    Fangusaro, Jason
    Witt, Olaf
    Driever, Pablo Hernaiz
    Bag, Asim K.
    de Blank, Peter
    Kadom, Nadja
    Kilburn, Lindsay
    Lober, Robert M.
    Robison, Nathan J.
    Fisher, Michael J.
    Packer, Roger J.
    Poussaint, Tina Young
    Papusha, Ludmila
    Avula, Shivaram
    Brandes, Alba A.
    Bouffet, Eric
    Bowers, Daniel
    Artemov, Anton
    Chintagumpala, Murali
    Zurakowski, David
    van den Bent, Martin
    Bison, Brigitte
    Yeom, Kristen W.
    Taal, Walter
    Warren, Katherine E.
    [J]. LANCET ONCOLOGY, 2020, 21 (06) : E305 - E316
  • [32] National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence
    Fedorov, Andrey
    Longabaugh, William J. R.
    Pot, David
    Clunie, David A.
    Pieper, Steven D.
    Gibbs, David L.
    Bridge, Christopher
    Herrmann, Markus D.
    Homeyer, Andre
    Lewis, Rob
    Aerts, Hugo J. W. L.
    Krishnaswamy, Deepa
    Thiriveedhi, Vamsi Krishna
    Ciausu, Cosmin
    Schacherer, Daniela P.
    Bontempi, Dennis
    Pihl, Todd
    Wagner, Ulrike
    Farahani, Keyvan
    Kim, Erika
    Kikinis, Ron
    [J]. RADIOGRAPHICS, 2023, 43 (12)
  • [33] Brain Tumor Segmentation for Multi-Modal MRI with Missing Information
    Feng, Xue
    Ghimire, Kanchan
    Kim, Daniel D.
    Chandra, Rajat S.
    Zhang, Helen
    Peng, Jian
    Han, Binghong
    Huang, Gaofeng
    Chen, Quan
    Patel, Sohil
    Bettagowda, Chetan
    Sair, Haris I.
    Jones, Craig
    Jiao, Zhicheng
    Yang, Li
    Bai, Harrison
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2075 - 2087
  • [34] Gal Y, 2016, PR MACH LEARN RES, V48
  • [35] Deep Learning Methodology for Differentiating Glioma Recurrence From Radiation Necrosis Using Multimodal Magnetic Resonance Imaging: Algorithm Development and Validation
    Gao, Yang
    Xiao, Xiong
    Han, Bangcheng
    Li, Guilin
    Ning, Xiaolin
    Wang, Defeng
    Cai, Weidong
    Kikinis, Ron
    Berkovsky, Shlomo
    Di Ieva, Antonio
    Zhang, Liwei
    Ji, Nan
    Liu, Sidong
    [J]. JMIR MEDICAL INFORMATICS, 2020, 8 (11)
  • [36] Cross-scanner harmonization methods for structural MRI may need further work: A comparison study
    Gebre, Robel K.
    Senjem, Matthew L.
    Raghavan, Sheelakumari
    Schwarz, Christopher G.
    Gunter, Jeffery L.
    Hofrenning, Ekaterina I.
    Reid, Robert I.
    Kantarci, Kejal
    Graff-Radford, Jonathan
    Knopman, David S.
    Petersen, Ronald C.
    Jack Jr, Clifford R.
    Vemuri, Prashanthi
    [J]. NEUROIMAGE, 2023, 269
  • [37] Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement
    Geis, J. Raymond
    Brady, Adrian P.
    Wu, Carol C.
    Spencer, Jack
    Ranschaert, Erik
    Jaremko, Jacob L.
    Langer, Steve G.
    Kitts, Andrea Borondy
    Birch, Judy
    Shields, William F.
    van Genderen, Robert van den Hoven
    Kotter, Elmar
    Gichoya, Judy Wawira
    Cook, Tessa S.
    Morgan, Matthew B.
    Tang, An
    Safdar, Nabile M.
    Kohli, Marc
    [J]. RADIOLOGY, 2019, 293 (02) : 436 - 440
  • [38] Al recognition of patient race in medical imaging: a modelling study
    Gichoya, Judy Wawira
    Banerjee, Imon
    Bhimireddy, Ananth Reddy
    Burns, John L.
    Celi, Leo Anthony
    Chen, Li-Ching
    Correa, Ramon
    Dullerud, Natalie
    Ghassemi, Marzyeh
    Huang, Shih-Cheng
    Kuo, Po-Chih
    Lungren, Matthew P.
    Palmer, Lyle J.
    Price, Brandon J.
    Purkayastha, Saptarshi
    Pyrros, Ayis T.
    Oakden-Rayner, Lauren
    Okechukwu, Chima
    Seyyed-Kalantari, Laleh
    Trivedi, Hari
    Wang, Ryan
    Zaiman, Zachary
    Zhang, Haoran
    [J]. LANCET DIGITAL HEALTH, 2022, 4 (06): : E406 - E414
  • [39] Inconsistent Partitioning and Unproductive Feature Associations Yield Idealized Radiomic Models
    Gidwani, Mishka
    Chang, Ken
    Patel, Jay Biren
    Hoebel, Katharina Viktoria
    Ahmed, Syed Rakin
    Singh, Praveer
    Fuller, Clifton David
    Kalpathy-Cramer, Jayashree
    [J]. RADIOLOGY, 2023, 307 (01)
  • [40] Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI
    Grovik, Endre
    Yi, Darvin
    Iv, Michael
    Tong, Elizabeth
    Rubin, Daniel
    Zaharchuk, Greg
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) : 175 - 182