A review of deep learning for brain tumor analysis in MRI

被引:0
作者
Dorfner, Felix J. [1 ]
Patel, Jay B. [1 ]
Kalpathy-Cramer, Jayashree [2 ]
Gerstner, Elizabeth R. [1 ,3 ]
Bridge, Christopher P. [1 ]
机构
[1] Athinoula A Martinos Ctr Biomed Imaging, 149 13th St, Charlestown, MA 02129 USA
[2] Univ Colorado, Sch Med, Anschutz Med Campus, Aurora, CO 80045 USA
[3] Massachusetts Gen Hosp, Canc Ctr, Boston, MA 02114 USA
关键词
GRADE GLIOMA RECOMMENDATIONS; UNCERTAINTY ESTIMATION; RESPONSE ASSESSMENT; SEGMENTATION; SYSTEM; HEALTH;
D O I
10.1038/s41698-024-00789-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring. Furthermore, it holds the potential to pave the way for personalized medicine through the prediction of tumor type, grade, genetic mutations, and patient survival outcomes. In this review, we explore the transformative potential of DL for brain tumor care and discuss existing applications, limitations, and future directions and opportunities.
引用
收藏
页数:13
相关论文
共 138 条
  • [1] Brain metastases
    Achrol, Achal Singh
    Rennert, Robert C.
    Anders, Carey
    Soffietti, Riccardo
    Ahluwalia, Manmeet S.
    Nayak, Lakshmi
    Peters, Solange
    Arvold, Nils D.
    Harsh, Griffith R.
    Steeg, Patricia S.
    Chang, Steven D.
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2019, 5 (1)
  • [2] The Need for Medical Artificial Intelligence That Incorporates Prior Images
    Acosta, Julian N.
    Falcone, Guido J.
    Rajpurkar, Pranav
    [J]. RADIOLOGY, 2022, 304 (02) : 283 - 288
  • [3] Adam Flanders, 2021, Kaggle
  • [4] Adewole M, 2023, Arxiv, DOI [arXiv:2305.19369, 10.48550/arXiv.2305.19369, DOI 10.48550/ARXIV.2305.19369]
  • [5] A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning
    Agn, Mikael
    af Rosenschold, Per Munck
    Puonti, Oula
    Lundemann, Michael J.
    Mancini, Laura
    Papadaki, Anastasia
    Thust, Steffi
    Ashburner, John
    Law, Ian
    Van Leemput, Koen
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 54 : 220 - 237
  • [6] [Anonymous], 2023, Neuro-Oncology, V25, P1197
  • [7] Atad Matan, 2024, Counterfactual Explanations for Medical Image Classification and Regression using Diffusion Autoencoder
  • [8] Baid U, 2021, Arxiv, DOI arXiv:2107.02314
  • [9] The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics
    Bakas, Spyridon
    Sako, Chiharu
    Akbari, Hamed
    Bilello, Michel
    Sotiras, Aristeidis
    Shukla, Gaurav
    Rudie, Jeffrey D.
    Santamaria, Natali Flores
    Kazerooni, Anahita Fathi
    Pati, Sarthak
    Rathore, Saima
    Mamourian, Elizabeth
    Ha, Sung Min
    Parker, William
    Doshi, Jimit
    Baid, Ujjwal
    Bergman, Mark
    Binder, Zev A.
    Verma, Ragini
    Lustig, Robert A.
    Desai, Arati S.
    Bagley, Stephen J.
    Mourelatos, Zissimos
    Morrissette, Jennifer
    Watt, Christopher D.
    Brem, Steven
    Wolf, Ronald L.
    Melhem, Elias R.
    Nasrallah, MacLean P.
    Mohan, Suyash
    O'Rourke, Donald M.
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [10] Intra- and Interobserver Variability of Linear and Volumetric Measurements of Brain Metastases Using Contrast-Enhanced Magnetic Resonance Imaging
    Bauknecht, Hans-Christian
    Romano, Valentina C.
    Rogalla, Patrik
    Klingebiel, Randolf
    Wolf, Claudia
    Bornemann, Lars
    Hamm, Bernd
    Hein, Patrick A.
    [J]. INVESTIGATIVE RADIOLOGY, 2010, 45 (01) : 49 - 56