The Invariant Measure for a Countable Generalized Iterated Function System

被引:0
作者
Abraham, Izabella [1 ]
机构
[1] Transilvania Univ, Fac Math & Comp Sci, Iuliu Maniu 50, Brasov 500091, Romania
关键词
Generalized iterated function system; countable generalized iterated function system; invariant measure; Monge-Kantorovich distance; ATTRACTORS; IFS;
D O I
10.1007/s00009-024-02751-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to answer one of the open questions raised in Strobin [Qual. Theory Dyn. Syst. 19, 85 (2020)] of whether there exists an invariant (Hutchinson) measure for generalized iterated function systems of any order, consisting of a countably infinite number of maps. Our results likewise strengthen those obtained in Secelean [Mediterr. J. Math. 11, 361-372 (2014)], where the existence of the invariant measure is ascertained only for the case of generalized iterated function systems of order 2, consisting of functions which satisfy a particular contractive condition.
引用
收藏
页数:22
相关论文
共 33 条
  • [1] Generalized Iterated Function Systems on b-Metric Spaces
    Abraham, Izabella
    Miculescu, Radu
    [J]. MATHEMATICS, 2023, 11 (13)
  • [2] Barnsley MF, 2014, Fractals Everywhere
  • [3] Bogachev V. I., 2007, Measure Theory: Volume I, DOI DOI 10.1007/978-3-540-34514-5
  • [4] Chitescu I., 1983, Spatii de functii
  • [5] Topological version of generalized (infinite) iterated function systems
    Dumitru, Dan
    Ioana, Loredana
    Sfetcu, Razvan-Cornel
    Strobin, Filip
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 71 : 78 - 90
  • [6] FERNAU H, 1994, MATH NACHR, V170, P79
  • [7] García G, 2020, MEDITERR J MATH, V17, DOI 10.1007/s00009-020-01585-5
  • [8] Guzik G., 2023, Banach Cent. Publ, V125, P23, DOI [10.4064/bc125-3, DOI 10.4064/BC125-3]
  • [9] On the geometric ergodicity for a generalized IFS with probabilities
    Guzik, Grzegorz
    Kapica, Rafal
    [J]. STOCHASTICS AND DYNAMICS, 2022, 22 (01)
  • [10] The Hutchinson-Barnsley theory for infinite iterated function systems
    Gwozdz-Lukawska, G
    Jachymski, J
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 72 (03) : 441 - 454