Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images

被引:1
|
作者
Bartold, Maciej [1 ]
Kluczek, Marcin [1 ]
Wroblewski, Konrad [1 ]
Dabrowska-Zielinska, Katarzyna [1 ]
Golinski, Piotr [2 ]
Golinska, Barbara [2 ]
机构
[1] Remote Sensing Ctr, Inst Geodesy & Cartog, 27 Modzelewskiego St, PL-02679 Warsaw, Poland
[2] Poznan Univ Life Sci, Dept Grassland & Nat Landscape Sci, 11 Dojazd St, PL-60632 Poznan, Poland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Extensive and intensive managed grassland; Machine learning; Backscatter; Multispectral bands; Satellite imagery; Ecosystem services; INTRAANNUAL TIME-SERIES; INFORMATION;
D O I
10.1038/s41598-024-83699-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Grasslands, being vital ecosystems with significant ecological and socio-economic importance, have been the subject of increasing attention due to their role in biodiversity conservation, carbon sequestration, and agricultural productivity. However, accurately classifying grassland management intensity, namely extensive and intensive practices, remains challenging, especially across large spatial extents. This research article presents a comprehensive investigation into the classification of grassland management intensity in two distinct regions of Poland, NUTS2 - namely Podlaskie (PL84) and Wielkopolskie (PL41), by integrating data from Sentinel-1 and Sentinel-2 satellite imagery. The study leverages the unique capabilities of Sentinel-1, a radar satellite, and Sentinel-2, an optical multispectral satellite, to overcome the limitations of using a single data source. Preprocessed Sentinel-1 and Sentinel-2 data were combined to extract spectral and textural features, providing valuable insights into grassland characteristics and patterns. Supervised classification using the Random Forest algorithm was used, and ground truth data from field surveys facilitated the creation of training samples. In Podlaskie, extensive grasslands achieved an overall accuracy (OA) of 84%, while intensive grasslands attained an OA of 83%. In Wielkopolskie, extensive grasslands exhibited an OA of 84%, while intensive grasslands achieved an OA of 83%. Additionally, the classification metrics, including user's accuracy (UA), F1 score, and producer's accuracy (PA), further highlighted the variations in classification accuracy. This comprehensive mapping of grassland management intensity using combined Sentinel-1 and Sentinel-2 data provides valuable insights for conservation agencies, agricultural stakeholders, and land managers. The study's findings contribute to sustainable land management and decision-making processes, facilitating the identification of ecologically valuable areas, optimizing agricultural productivity, and assessing the impacts of different management strategies. Furthermore, the research highlights the potential of Sentinel missions for grassland monitoring and emphasizes the importance of advanced remote sensing techniques for understanding and preserving these crucial ecosystems.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium
    Van Tricht, Kristof
    Gobin, Anne
    Gilliams, Sven
    Piccard, Isabelle
    REMOTE SENSING, 2018, 10 (10)
  • [2] Combined Use of Sentinel-1 and Sentinel-2 for Glacier Mapping: An Application Over Central East Alps
    Barella, Riccardo
    Callegari, Mattia
    Marin, Carlo
    Klug, Christoph
    Sailer, Rudolf
    Galos, Stephan P.
    Dinale, Roberto
    Gianinetto, Marco
    Notarnicola, Claudia
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 4824 - 4834
  • [3] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [4] Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2
    Bartsch, Annett
    Pointner, Georg
    Ingeman-Nielsen, Thomas
    Lu, Wenjun
    REMOTE SENSING, 2020, 12 (15)
  • [5] Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets
    Aduvukha, Grace Rebecca
    Abdel-Rahman, Elfatih M.
    Sichangi, Arthur W.
    Makokha, Godfrey Ouma
    Landmann, Tobias
    Mudereri, Bester Tawona
    Tonnang, Henri E. Z.
    Dubois, Thomas
    AGRICULTURE-BASEL, 2021, 11 (06):
  • [6] SYNERGISTIC USE OF SENTINEL-1 AND SENTINEL-2 IMAGES FOR IN-SEASON CROP TYPE CLASSIFICATION USING GOOGLE EARTH ENGINE AND MACHINE LEARNING
    Sharma, Sneha
    Ryu, Dongryeol
    Sumesh, K. C.
    Lee, Sun-Gu
    Jeong, Seungtaek
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3498 - 3501
  • [7] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [8] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [9] Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belem, Eastern Brazilian Amazon
    Tavares, Paulo Amador
    Santos Beltrao, Norma Ely
    Guimaraes, Ulisses Silva
    Teodoro, Ana Claudia
    SENSORS, 2019, 19 (05)
  • [10] Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data
    Nielsen, Allan A.
    Larsen, Rasmus
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 147 - 158