Improved Scalar Auxiliary Variable Schemes for Original Energy Stability of Gradient Flows

被引:1
作者
Chen, Rui [1 ,2 ]
Wang, Tingfeng [3 ]
Zhao, Xiaofei [4 ,5 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Math & Informat Networks Minist Educ, Beijing 100876, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[5] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
关键词
Gradient flows; Improved scalar auxiliary variable scheme; Original energy stability; Allen-Cahn and Cahn-Hilliard equations; Convergence; PHASE-FIELD MODELS; STABLE NUMERICAL SCHEMES; LINEAR SCHEMES; ALLEN-CAHN; EFFICIENT; 2ND-ORDER; ACCURATE; APPROXIMATIONS; ALGORITHMS; SEPARATION;
D O I
10.1007/s10915-025-02796-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Scalar auxiliary variable (SAV) methods are a class of linear schemes for solving gradient flows that are known for the stability of a 'modified' energy. In this paper, we propose an improved SAV (iSAV) scheme that not only retains the complete linearity but also ensures rigorously the stability of the original energy. The convergence and optimal error bound are rigorously established for the iSAV scheme and discussions are made for its high-order extension. Extensive numerical experiments are done to validate the convergence, robustness and energy stability of iSAV, and some comparisons are made.
引用
收藏
页数:34
相关论文
共 51 条
[11]  
Du Q., 2020, Handb. Numer. Anal., V21, P425, DOI [DOI 10.1016/BS.HNA.2019.05.001, 10.1016/bs.hna.2019.05.001]
[12]   Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes [J].
Du, Qiang ;
Ju, Lili ;
Li, Xiao ;
Qiao, Zhonghua .
SIAM REVIEW, 2021, 63 (02) :317-359
[13]   Modeling elasticity in crystal growth [J].
Elder, KR ;
Katakowski, M ;
Haataja, M ;
Grant, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (24) :2457011-2457014
[14]   THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS [J].
ELLIOTT, CM ;
STUART, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) :1622-1663
[15]   Unconditionally gradient stable time marching the Cahn-Hilliard equation [J].
Eyre, DJ .
COMPUTATIONAL AND MATHEMATICAL MODELS OF MICROSTRUCTURAL EVOLUTION, 1998, 529 :39-46
[16]   Dynamics of Phase Separation in Polymer Blends Revisited: Morphology, Spinodal, Noise, and Nucleation [J].
Fialkowski, Marcin ;
Holyst, Robert .
MACROMOLECULAR THEORY AND SIMULATIONS, 2008, 17 (06) :263-273
[17]   Model for pattern formation in polymer surfactant nanodroplets [J].
Fraaije, JGEM ;
Sevink, GJA .
MACROMOLECULES, 2003, 36 (21) :7891-7893
[18]   DYNAMIC DENSITY-FUNCTIONAL THEORY FOR MICROPHASE SEPARATION KINETICS OF BLOCK-COPOLYMER MELTS [J].
FRAAIJE, JGEM .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (11) :9202-9212
[19]   Two-phase binary fluids and immiscible fluids described by an order parameter [J].
Gurtin, ME ;
Polignone, D ;
Vinals, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (06) :815-831
[20]   A new class of implicit-explicit BDFk SAV schemes for general dissipative systems and their error analysis [J].
Huang, Fukeng ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392